MAC-TR~27

@
e
e

-]

G

=
wi
|
9
wi
0
<«
O
—
b o
-t
<
=
<
-
a.
D
(2 d
ol
ut
=
mad
=
o
]
(224
<
(&
Q
O

9 @

by

Project MAC

| D

Ad0D INTHILY
PR IL 7T €S

] oygoasyn | Ado ommm.m..l..

- ——

Z&mq‘éﬁmoﬁw N1 YVOINHOWUL
GNVY OIAIINHIOS TYYRQAUI Y04

Daniel James Edwards
May 1966

-

. ASMOHONIN¥VITD

MASSACHUSETTS INSTITUTE OF TECHNGT.OCY

AN it SNt el P
= e
’

e I e e

Massacl usetts Institute of Technology
Project MAC
545 Technolegy Square
Cambridge, Massachusetts

02139

Work reported herein was supported in part by Proisct
MAC, an M.I1.T. research project sponscred by tre Advanced
Research Projects Agency, Department of Defense, under
Office o©of Naval Research Contract Nonr-4102(01}.
Reproduction of this report, in whole or in part, is

permitted for any purpose of the United States Gevernment.

This technical report was composed and reproduced,
on-line in the MAC computer system, with the aid of the

TYPSET and RUNOFF programs.,

+

it o

o o fwbnib

i
1

i

T

wt@%&mmﬂ

RN

g
‘s\ R

1

hy
i
Hay

< 3y

4,

R e 1

rea

hrkat

e

OCAS - ON~LINE CRYPTANALYTIC AID SYSTEM
l\'.
DANIEL JAMES EDWARDS

5.8B,, Hassachusetts Institute of Technology
(1959)

SUBMITTED 1IN PARTIAL FULFILL!TNT OF :HE
REQUIREMINTS FCGR THE DECGREE OF
HMASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January 17, 1966

= A Y
. 7 i bl N
Signature of Author 5t;;;vk2{ Ty P
bDepartment of Electriéal Enaineering, January 17, 1966

L. (Original signed by Marvin L. Minsky)
Certified by & s Y - ®

Thesis Supervisor

(Original signed by Truman S. Gray)
Accepted by

Chairman, Departmental Committee cn Graduate Students

e i Tt

= - sz e e Yoot g
caweg - e < SRS SIS YT s -
x“ﬁ‘ * -

— i-wl,%

ut

o g

5§y ANy s

e

-
%

%
-]
F3
?
£

5
¥

OCAS - ON-LINE CRYPTANALYTIC AID SYSTEM
by

DANIEL JAMES EDWARDS

“*bmitted to the Departinent of Electrical Engineering on January 17,
+966, in partial fulfillment of the requirements for the degree of
Master of Science.

ABSTRACT

Deficiencies of various programming lanquages for dealing with
quantities frequently encountered in cryptanalysis of simple cipher
systems are discussed. A prograrming systemr is proposed which will
permit a cryptanalyst to write and debuy proorams to aid in the
solution of cryptograms or cryptographic systems. The basic
elements of the proposed programming system are discussed in detail.
They include: 1) a procgramming language to handle both algebraic
quantities and character strings, 2) a display generator to permit
quick specification of a display frame containing both alphanumeric
strings and numerical data for an on-line CRT display device, and 3)
an on-line program tc control operation of the system and aid 1o
debugging programs written in the proposed languacqe.

Thesis Supervisor: Marvin Lee Minsky

Title: Professor of Electrical Engineering

A BT L e e -

CCAS - ON-LINE CRYPTANALYTIC AID SYSTEM

by

DANIEL JAMES EDWARDS

“+bmitted to the Departwment of Electrical Engineering on January 17,
«366, in partial fulfillment of the requirements for the degree of

Master of Science.

ABSTRACT

Deficiencies of various programming lanquages for dealing with
quantities frequently encountered in cryptanalvsis of simple cipher
systems are discussed. A pregramming system is proposed which will
permit a cryptanalyst to write and debudq programs +tc aid in the
solution of cryptograms or cryptoaraphic systens, The basic
elements of the proposed programming system are discussed in detail.
They include: 1) a procramming language to handle both algebraic
quantities and character strings, 2) a display generator to permit
quick specification of a display frame containing both alphanumeric
strings and numerical data for an on-line CRT display device, and 3)
an on-line program tc control operation of the system and aid i
debugging programs written irn the proposed lanquaqe.

Thesis Supervisor: Marvin Lee Minsky

Title: Professor of Electrical FEngineering

i
P TN R ey 'lm T e A

? TG st e L
TENL R s e TR S S - W, =z

—
<
e

"
4
Z
¥
§
Kd
2
=

"E‘:M”

i
o

&mﬁ?%ﬁw&%:"h&u Vit

T
vithg &

PR 0%

%

\

L

i
i

e ~ e

L.
v s,

F

1
3
i

b i

ACKNOWLEDGEMENTS

The author woul. like to express his appreciation to Prof, Marvin L.

o st k] o it RS

Minsky who acted as thesis supervisor; to Messrs. Edward L. Glaser

ané Oliver G. Selfridge for their constant source of inspiration in ;i -
completing this thesis: to Mr. Donald K, Pollock for nis help in § .
obtaining hard to get crvotoaraphic literature; ané to my wife Jovce }
for her patience during the entire project and help in typing the é

final manuscript.

e nane

< bbb 1M it 0] T L M W e S

o

v o

EIREwo

-

-

[T N

/

R—

[V .

1

e
[

i ®ir

.

i

Ao L ik S B |

s o

R S AL LI B S SR PRI, s o
-

ey

s cobenson s s S

{

.

et A e

s

TABLE OF CONTENTS

SECTIONR PAGE
ABSTRACT i
ACKHOWLEDGEMERT ii
1 DEFINITIONS 1l
2 INTRODUCTION 3
3 Ne~LINE CRYPTANALYTIC AID SYSTEH {(oCas) 7

.l On-line Cryptaralytic ni¢ Language (OCAL) 7
3.1.1 B8asic Data Types 8
3.1.2 Compound Data Structures 9
3.1.3 Declardtions 3
3.1.4 Statements 10
3.1.5 Procedures 10
3.1.6 Relationc :
3.1.7 Arithmetic H
3.1.8 Logical Expressions 11
3.2 On-line Cryptanalytic Display Generator (OCDIS) 1}
3.3 On-line Debugging ard Control Proaram (ODBUG, 12
4 IMPLEMENTATION 13
5 EARMPLES OF OCAL APPLIED TO CRYPTOGRAPHIC PPGCESSES 15
5.1 Simple Freguency Count 15
5.2 1longest Repeatel Sesjuence 16
6 CONCLUSIONS 17
RPY (o .‘01('1.,.: PAGE
A OLIEIN CIPHER SYSTLHNS 19
B SOLUTION OF THE RAILTINCE CIPHER IW SMOBOL 21
[od DETAILED DESTRIPTION OF OCAL SYNTAX 27
C.1l Syntax Hetstion 27
C.2 Basic Program Flements 28
C.2.1 Character Set 28
C.2.2 1Identificrs
C.2.3 Use of Blanszs 28
C.2.4 Comments 28
C.2.5 Staterents 28
C.2.6 Blocks 28
C.2.7 Statement Labcls 29
C.3 Basic Data Types 29
C¢.3.1 Logic 29
29

C.3.2 Integer

Iy
[
1%

iﬁ 5 'w»mami‘ TM" =

TABLE OF CQONTENTS

APPLNDICES PAGE
C.3.3 Real 29
% C.3.4 Character 30
C.3.5 String 30
i C.3.6 Reader 31
} C.3.7 Alphabet 31
F ¢.3.8 Typre Transfer Procedures 32
E C.4 Basic Declarations 32
C.5 Compound Data Structures 33
C.6 Expressions 33
C.6.1 Arithmetic Exprezssions 32
C.6.2 Relational Expressions 34
C.6.3 Logic Expressions 34
C.7 Statements 35
C.7.1 PROCEDURE 35
C.7.2 BEGIN and END 35
C.7.3 Aassignment 36
C.7.4 PROCEDURE Calls 36
C.7.5 Iteration 36
C.7.6 Conditional 37
Cc.7.7 GO TC 37
C.7.8 VRLUE 37
C.7.9 RETURN 37
C.7.10 ERROR 37
C.7.11 ON 38
C.7.12 SNOBOL Pattern Matching 39
C.8 Input/Output. Procedures 40
C.9 Reader Functions 41
C.10 Resource Allocation 43
D ON~LINE CRYPTRNALYTIC DISPLAY GENERATOR (OCDIS j 45
D.1 Procedures 45
.2 Formats 46
D.3 Display Descriptors 47
E ON-LINE DEBUGGING AND CONTROL PROGRA! (ODBUG) 49

F AN EXAMPLE IR OCAL -
%‘ FINDING THE PERIOD OF A PERIODIC CIPHER 51
i
|

BIBLIOGRAPHY 53

[TN

1
i i SECTION 1
3 DEFINITIONS
5
% % This thesis is primarily concerned with an on-line computer i
:g i programmning system designed to ease the work of a cryptanalyst.)
§§ ; The following definitions are givea to acquaint the reader with
§§ : some of the terms cormonly encountered in the field of
® cryptanalysis.
é; Cryptology is the branch of knowledge that deals with the
= : development and use of all forms of secret communication.
;g . : Cryptography is th=2 branch of cryptology that deals wiih secret
% ! writing.
:§ Cryptanalysis is the branch of cryptology that deals with the
'g ! analysis and solution of cryptographic systems.
f§ A Cipher is a cryptographic system which conceals, in a
§ cryptographic sense, the letters or groups of letters in the
% message or plaintext. (Appendix A gives a 1list of common cipher
ig systems.)
‘3 Enciphering is the operation of concealing a plaintext, and the
§§ result is a cipher text, or in general a cryptogram.
% Deciphering is the process of discovering the secret meaning
% of a cipher text.
% A key is the variable parameter of a cipher system, prearranged
§ between correspondents, which determines the specific application of
; a general cipher sysem being used. The use of keys permits almost
4 endless variations within a given cipher systenm. In fact, the
g value of a specific cipher system is lased on how hard it Is for an
; "enemy" to break a cryptogram or series of cryptograms, assuming he

knows the complete details of the system but lacks the keys which
were used tn encipher the cryptograms originally. (See Appendix B
for an example of a cipher and a key.)

A code is a cryptographic system which substitutes
groups for words, phrases, or sentences found in the plaintext.
involves the use of a codebook, copies of which are kept by each

symbol
It

correspondent.
Encoding is the operation of concealing a message using a code. .
. 7

Decoding is the process of recovering an encoded message.

: A code differs from a cipher because a cnde deals with
: plaintext ir variable size units, such as words or phrases, while a

1 cipher veals with plaintext in fixed size units, usually a letter at

RN s R g Bt

WY FLoost

]
]
¥
'
b

a time.

SECTICN 2

INTROGUCTION

The history of using ciphers to convey messages from one person
to another goes back to earliest times, The Scytale, a trans-
position cipher device, was originated by Lacedaeronians and used
extensively in Cicvero's time., Modern substitution ciphers can be
traced back to the cipher used by Julius Caesar, who substituted D
for A, £ for B, F for C, ... to B for 2, etc. in correspondence that
he wished to keep from poving eyes.

The invention of the printing press broucht many people in
contact with the field. The first of a nearly constant stream of
books on cryptology was Chronoclogia Mystica, published by
Trithemius, abbot of Spanheim and Wuerzburg, in 1516. Since that

time much progress has bkeen made in the use of ciphers and codes for
diplomatic, miiitary, and even criminal purposes. Books by Yardley
ané Pratt {sce Bibliography) give graphic pictures of the uses of
codes and ciphers from the middle aagcs up throuch the late 1920°'s.

By the late 1920°'s, advances in the art of communications made
cryptoloqy a very sensitive area. The first rumblings of World War
I1 led the governrents of the majer world powers to impose an
information blackout on new literature available on the general
subject of cryptanalysis. Since then, no new major works on the
subject have been made available to the general public (with the
possible exception of LYRAUD's book - see Biblioaraphy). All books
published since 1940 have dealt with analysis of cryptogravohic
systems which have been conmon krowledae since the late 1920's.
Public interest in the field has been mainvained by the American
Cryptogran Association (ACA) which was founded in 1929 and still
publishes The Cryptogram, a bi-monthly maqgarine of articles and
cryptograms., The hobby of solving cryntograms provides a
fascinating intellectual challenge to those so inclined. Patient
analysis and flashes of insight, combined with the thrill of
uncovering something hidden, give cryptanalysis an enjovment which
is almost unique.

The advent of modern high-speec digital compaters raises
speculation as how best to apply <the computer's vast bookkeeping
powers to the field of cryptanalysis. Crvptanalysis may be thought
of as a recursive process where one forms hypotheses and then checks
the validity of the resulting implications. and creativity is
associated with the forming of new hypotheses. By rapidly and

accurately checking the validity of implications, cocmputers can

e rre———— —— — T — S T T T T T T P e =

r

e e, i ot e

o iR X
3

}
[
'
i

4 SECTION

18]

I L T o 2 S L e T O
)

provide the analyst with information needed to forr. new hypotheses,
The kind of aid@d a computer would provide can be seen in

R i

T Yardley's discussion of breaking the Japanese diplomatic code

< preceding the Washington Armament Conference of 1921-22, The

clerical work in this instance required preparing 60,000 index cards

with fragments of Japanese messages in both plain and code text.

This prerzration was done by a “corps of typists" working many

|- hours. After the cards were prepared, they were sorted into various

| A categories and summerized by hand onto large summary sheets, Tasks
| like this could easily be accomplished by a digital computer.

Solution of ciphexs also requires a certain amount of routine

pookk=eping, ch as counting letter fracuencies and looking for

Wit S s

repeated digr.pohs. Also, Colonel Friednan'’s advice about using a
soft pencil with a biq eraser is well taken, for in solving
cryptograms by hand the eraser is used almost as freguently as the
pencil.

Let us again examine the idea of using a computer, this time
with a CRT display. Why ac® have the corputer allow an operator to

nake a guess and watch thz computer work cut the consequences? 1f

ol e W

the guess does not "prcve out", the operator can erase the guess and

”

its consequences with a single key stroke. The advent of modern
time-shared computer systems, complete with CRT displays, places all

LT)

of the above-coniectured uses of a computer within the realm of
practicability, because an expensive computer need not be tied up .
while the aralyst is trying to figure out what to do next.

The problem then resolves to: what language can a cryptanalyst
use to program an on-line computer to perform the varicus tasks

PPk R A

pertaining to solving a cryptogram? let us 1list some of the

w
o,

rzquirements for such an On-line Cryptanalysis Aid Language (OCAL)

and then exanine some existina lanquages in light of these
requirements. First, the OCAL must handle strings of alphabetic
characters and manipulate these strincs easily. Second, the OCAL
rmust handle algebra with ease, including matrix operations. Third, 3
the OCAL shoulg be embedded in a machine environment which allows
the cryptanalyst to write and check out prodrams on-line. Finally,
the OCAL must be reasonably efficient in its use of computer time
and storage, if reasonable response times are desired in a
time-shared computer environment.

Available ianguages for proqrarming computers include basic
machine language, LISP and its derivatives, the ALGOL family of :
o languares, and string-processing languages such as METEOR and -

R4 4

SKOBOL. Machine language, even with macros, is rejected because it

aun s

is much too hard to program and quickly check ideas. The OCAL

3
3 % =

should be a tool which a cryptanalyst can use easily, while machins

T G e e

BN v s

;
2

Wb

R IR T ey gy

o

I

1]
LRSI 1]

10

SECTION 2 5

°
language, even in the hands of a skilled proqgrammer, is a blunt

instrument at best. LISP on the other hand, while not easy to
learn, is a powerful language for many types of complex data
manipulation tasks. LISP handles algebraic tasks with moderate
ease, matrix manipulations with some difficulty, and strings with
still more difficulty. Finally, storage efficiency leaves much to
be desired., and this objection 1is especially critical when the
problem of using large dictionaries in the OCAlL is considered.
Therefore, LISP is rejected as +the OCAL. The other LISP=like
languages, such as SLIP, threaded 1lists, and IPL (the machine
language ¢f list processing) suffer similar deficiencies.

Next, the ALGOL family of lanquages, such as ALGOL, MADU, AED,
PL/1, anu even TFORTRAN is considered. These languages handle
algebra with ease, but their string-hancdling abilities are almost
non-existent. Furthermore. none >f these languages is particularly
well adapted to on-line use. This, coupled with the difficulty of
adding good string-processing features to any current time-sharing
version, leads us to look elsewhere for the OCAL.

Finally, let us examine the rather interesting
string-processing language SKNOBOL. The heart of SNGBOL is an
elegant pattern-matching algorithm which allows a string to be
tested for a complicated pattern in one statement. In order to test
the suitability of SIOBOL fer cryptanalysis, a program to solve the
simple railfence cipher was written and debuqggqed in about 15
man~hours using the Ccmpatible Time-Sharing System at #Project MAC.
(See Appendix B for a discussion o0f the railfence cipher and a
resulting SHOBOL program,)

Writing the railfence proaram revealed several weaknesses in
SNOBOL. First, the arithmetic was workable but somewshat awkward.
Second, there was no provision for arrays, which made <%he solution
scoring by digraphs rather difficult. This problem was solved in
the railfence program by making the digraph scoring array into a
series cof fixed strings which were accessed by the pattern-matching
statement.

The most serious deficiency of SHOBOL was the lack of a
functional argurment provision iw the pattern-matching statement.
That is, pattern elements cculd be fixed strings, arbitrary strings,
arbitrary strinas of fixed lenath, or repeats of previously-matched
pattern eslements. Missing was provision for making a pattern
element into an arbitrary string, subject to a predicate procedure
which could examine the state of the pattern match to that point.

{This deficiency is not oresent in the <string-processing langquage
METECR which is an improved LISP implementation of the
string-processing ianguage COMIT. However, PMFETEOR still suffers

-

s
.

w

E

ot
g (X8

Mg

3

v

»’.w;:’-r-i}‘*“‘& b

R T

§

} ‘l‘ 3 - sm..——wm;‘."‘i“,‘ '

<

e T xbiRi bt -Mfﬂﬂ T‘ " hJ,‘mM
'
¢
{
"
1
'
.

S e

PR Ry

.

6 SECTION 2

from the same problems as LISP, reaarding efficient us¢ of time and
storage.)

These deficiencies ruled out SNOBOL as the OCAL, but the
pattern-matching concept was considered important snd was extended
along the lines of allowing a pattern element to specify a predicate
procedure. This extended SNCOBCL statement was then incorporated¢ in
the final design of OCAL.

With no single language suitable for the OCAL, two courses of
action were open. Either take an existing language and extend it to
overcome deficiences, or design a new language aimec¢ specifically at
the field of cryptanalysis, The first alternative was rejected,
because extending an existing lanquage does not usually allow one tn
insert new ideas withcut redesigning the entire language. The
author was interestecd in what could be done from soratch, and
therefore he chose the second alterngtive, design of a new language.

Hence, the specific goal of this thesis is to specify and
dermonstrate an On-line Cryptanalytic Aid System (OCAS) which will
permit a computer progru.tmer, who 1is already familiar with
cryptanalytic procedures, to easily program and -test an attack on

any of the 30 different cipher systems that reaularly appear in
The_Cryptogram (igain, see Appendix A).

Coen Ao i g i

-

U G0ty ARGIRRATAR, Wi ity ¢

Ll L FENTIRCH

1A rimatsta st PR EPL 1Y

:

i

s+

- = e

R

SECTION 3

ON-LINE CRYPTANALYTIC AID SYSTEM (OCAS)

The proposed On-line Cryptanalytic Aid System (OCAS) has the
following parts, First, a computer prcaramming language, OCAL,
which easiiy handles both algebraic calculations and character
string manipulations. Second, an On-line Cryptanalytic Display
Generator (OCDIS) to allow people to interact more rapidly with the
program than using just a teletypewriter. And finally, an On-line
Det ugging and Control Program (DDBUG).)

Each cf these parts will be discussed in later sections. This
section will discuss some of the basic desiqn criteria of the OCAS.
First, the system should be reasonably easy to use, once the basic
languages involved are learned. Second, the system should contain a
complete set of text-editing and program-debugging aids. Third, the
system shotld be “fail-soft”. That is, it should be forgivina to
common programning mistakes and the operator should be able to
regain control of a run-away program., Finally, the system should be
open-ended so that new programs can be added with ease. and using
OCAS, the cryptanalyst should be able to 1let the computer handle
most of the bookkeeping tasks invelved in solving a cryptogram or
cryptographic system.

Another design criterion for the OCAS was easn of
implemzntation. The difficulties n»f fully implementing ALGOL are
well known. Everything ir OCAS had to be easily implementable on a
reasonable machine. 1t was hoped that a skeletal implementation of
OCAS could be completed in four months. This introcuced the
conflicting design goals of a complete language versus speed of
implementation. During development of system specifications, this
conflict was usually resolved in favor of a complete language: so
as a consequence, the skz2letcn implementation was started but not
completed.

3.1 ON-LINE CRYPTANALYTIC AID LANGUAGE (OCAL)

OCAL is a problem-oriented computer prograrming language with

the general area of cryptanalysis as the prnblem domain, OCAL is
basically a synthesis of the MAD and SNOBOL computer programming
languages, combined with ideas taken from SLIP and PL/I. This

section describes the basic features of OCAL. (A complete descrip-

tion of OCAL syntax can be found in Appendix C.)

&

B4

4

ey 4
ot e
TR A

,_uku#}ﬁiiu

f
b
t
4

|

Biaagand bl

'y

=

|
j

W

v

ot amninne A

dmhi

8 SECTICN 3

3.1.1 Basic Data Types
The following quantities comprise the OCAL basic data types:

a) Logic - a two-bit gquantity standing for True, False,
Neitker, or Undefined. The reason for introducing a basic
four~value logic is to make the results of certain 1logical
comparisons more obvious to the programmer. For instance, the
question %"Is ten greater than an orange?" could be answered
“Undefined” because the quantities involved in the comparison are
not comparable. An example of use for logic value “Neither®" might
be in response to the question "Given that cipher A stands for
plaintext Q in a simpile substitution cipher, does cipher text MKP
stand for plaintext THE?" The answer "Neither" in this case means
undecided, for the information given is insufficent.

Situations requiring a simple Boolean decision can be made on a
"True® or “Not True" (e.g., "False®, "Neither", or "Undefined")
basis.

b} Integer - the standard computer quantity use¢ for integer
arithmetic and subscripting expressions for compound data
structures.

c) Real - floating-point nurbers used primarily in arithmetic
calculations.

@) . Character - a two~ to eight-bit representation of a member
of the ASCII character set. Each character is associated with an
alphabet (defined next) which gives the mapping from a particular
ASCII character subset into the full ASCII character set. The
Character is the b:>sic constituent of the string (defined later) and
may also be used in subscripting expressions for compound data
structures.

e) String - an ordered set of characters all taken from tne
same alphabet. A string may be arbitrarily long and is asscciated
with an alphabet that gives the mapping of character representations
into ASCII characters. Also asscciated with a string is an integer
giving its current length in characters.

f} Reader - an object which may be associated with a string.
A reader may be thought of as the reading head of a Turing machine,
with the associated string being the Turing-machine taps., A reader

can move up and down a string, read characters out, or write
characters into a string., In addition, a reader can be positioned

£ e

Lot e B g dtin s dita

[r————

it e SN b o g Lt 1 g s

"

[
-

REU R (TR P
—

4 {i,‘,’ £ AR

P e

e o, sl

. , WL 2 3 . N
osdnion ABCIREHERL A1 el BN, bt h Bt 15+ o
. i 1

‘.

o

RN)

" n

vif

)
4
o

LT T T

SCCTION 3

at the head of a strirng, at a presct place on the string, or at an

arbitrary place on the string.

g) Alphabet - defines a mapping function from the ASCII
character set {(the standard OCAL alphabet) into a subset of ASCII.
The alphabet concept is used to gain storage and subscripting
efficiency when dealing with characters and strings. An alphabet
may map any number of characters in the domain (ASCII) into a single
character in the rance. Characters appearing in the domain, but not
in the range, are mappec into the null character (i.e., ignored).
In addition, each alphabet provides two extra characters in the
range corresponding to liogic values "Neither” and "Undefined". This
feature allows OCAL to indicate certain logical decisions orx
conditions within a string.

Also associatecé with each alphabet is an integer equal to the
cardinality of the mapping range, excluding the 1logical characters
"Reither®" and "Undefined”. This permits character and string
arith-metic to be done modulo the size of the alphabet.

h) Statement Label -~ a special data type referring to a part
of an OCAL procedure. Statement labels are data types to permit
assigned GO TO statements and functional arquments in OCAL.

3.1.2 Compound Data Structures

The OCAL compound data structure is taken £from the PL/I
language. Compound data structures can consist of any of the
previously-mentioned basic data types and other compound data
structures, Various parts of a compound data structure can be
accessed either by name or by subscripting expressions. Thus, a
real array in OCAL is simply an n-dimensional compound data

structure consisting of real numbers.

3.1.3 Dbeclarations
Declarations are used in OCAL to asscciate data types with the
local variables used in a procedure. All variables must be declared

at the head of the procedure or block in which they appear.

Variables may be either lccal or global in scope: local variables

are defined only within the block or procedure containing the

declaration, and global variables are define@d in all blocks and

procedures.
Declarations are also used to define compound cdata structures;
in which case all the elements of the declaracion must be basic data
types or already-declared compocund data structures. That is,
recursive definition of a compound data structure is not permitted.

3
:
-

A

i

B
z
E
;

!

[

*
]

x f
e sovemaeas o

:

1)

10 SECTION 3

3.1.4 Statements
Statements in OCAL may b. either simple or compound. Sirple
statements are terminated by a semi-colon, or the end¢ of the line on
which they appear, unless the continuation character *.% (period)
appears as the first character on the following 1line, Executable
statements may be symbolically labeled with one or more labels.
Compound statements are groups of statements enclosed within
the statement parentheses, BEGIN and END. A cormpound statement is
called a block, and blocks may be nested to any depth.
OCAL statements fall into the following cateqories:
a) Declarations - type identification, data structure,
and prccedure structutre;
b} Control - GO TO, conditional, and iteration;
c} String pattern matching -~ similar to the basic
SNOBOL string pattern-matching staterent;
d) Assignment - assigns values to symbolic quantites;
e) Execute - calls a specific procedure, but ignores
any values returned;
f) Errxor control - allows an OCAL procedure to retain

control even thuugh a called procedure has taken an
error return.

(A detailed list of statements with their syntax is in Appendix C.)

3.1.5 Procedures

Procedures may have a fixed or variabkile number of arguments or
pararmeters. If the procedure has a variable nurber of parameters,
the global integer variable T"NUMBEROTBSETS" oaives the number of
parameter sets for any particular procedure call. Parameters are
referenced by the local name which is given procedure declaration.

Procedures may be defined recursively and keep their working
storage on push-down lists, Procedure calis are made in the form

fn.{al,a2, ...,an)
where "fn" is .he procedure name and the period [.] distinguishes a
prccedure call from a subscripted variable. The "ai"s are the
parameters for the called procedure.

A procedure with no arguments is called by the procedure name
followed by a period.

A procedure may be given a value by the statement

VALUE e
where "e" is any expression.

There are two procedure rcturns in OCAL; first, the normal
return is specified by the staement

RETURN e

SECTION 3 11

or by executing the last statement of a procedure, and the second
return is given by the statement

ERROR s
where "s" is a string. On executing an error return, control is
returned to the last procedure ~hich executed the statedent

ON ERROR, s .-
where "s" is any simple or compound statement ({(usually a GO TO
statement, or a block ending with a GO TO or DISMISS statement).

R b

3.1.6 Relations
These are logical operators that compare integer, real,

character, and logical gquantities. The value of a comparison is the
logical quantity "True®™ if the relation holds, “False" if the
relation does not hold, and “Undefined® if the quantities arve
incomparable (e.g., is “blue" equal to 3,142?).

AW 0 AW A g

3.1.7 Arxithmetic

Normal infix operators may be used in arithmetic expressions in)
QCAL. Each operator takes operands whose type is character,
integer, or real and produces a result which is the same type 23 the

highest type of any operand; the ranking between types is character
Furthermore, i€ characters

AT,

YIS

lowest, integer next, and real highast.
appear in any arithmetic expression, the result is taken modulo the
alphabet size associated with the first-mention:d character. This
feature may be suppressed if desired.

E

AW W g

3.1.8 Iogical Expressions

Standard logical infix operators are available in OCAL. Each
operator takes two arguments whose type is 1logic, character, or
integer. The logical operators produce a result which is the same
type as the highest typss of any operands; the types being ranked
with logic lowest, character next, and inteager highest. The value
of a logical operator is the bit-wise combination of the operands
after type transfers (if any) have been performed.

ol o ARSI Y L 08B 45 AR INIDGL 8 oo

3.2 ON-LINE CRYPTANALYTIC DISPLAY GENERATOR (OCDIS)

asetys

OCDIS is internded to permit a cryptanalyst to easily specify a K

CRT display of the quantities available in OCaAS. The display may -3
either be fixed (unchanged until the cryptanalyst interacts witnh the g
computer) or dynamic (changed periodically to reflect interrsdiate . :
results asscciated with some continuing set of procedures being
executed by the computer). The display is organized using a set of
formats which correspond to pages in a bLook. The operatci® <an

I I :m 6
[T Su——

IR S

2(!?. 3

W R
NERETTR

o S e B ae T e T e - -
"y, s e T et

o LRSI = . - e i e
pEecid . B IS — i
= F = = T, S = S = = e

-

r—————— e = ot o

<. il

4
14
[rae
{
!
i
¢
I

T

2
2
£
ig

1

PR R

12 SECTION 3

- "£i1ip" pages with pushbutton commands from the display console. A
static display is compiled once, each time it is brought onto the
screen. A dynamic display is compiled when brought onto the screen
and then portions of it are periodically recompiled to keep up with
changing portions of input data.

LR TYRTRvIe s

The CRT display itself is run in program-interrupt mode, so

that computations can proceed even when a display is visible. {a

summary of the features of OCDIS is given next, and detailed
specifications for the OCDIS programs may be found in Appendix D.)

Each display contains a log in the upper left hand corner which

gives the current date, time, frame nurmber, and title for identifi-

-s¢atica of still photographs taken of the display. This log is main-

»
-

tained by the system and thus is not a burden to the cryptanalysct.

The mairn data type used in a cryptographic display is the
string. A string display may be organized by the number of strings
to be displayed in parallel., For a simple substitution display this
could be three lines; one for the cipher text, one for the plain-
text, and one blank line for general eye relief, The line length in
characters is preset, and when data is supplied this basic three-
line format is repeated down the display until all data are used.

In addition to strings, OCDIS can display other basie data
types and compound data structures, such as matrices and character
arxays. Vectors can be displayed either as a table of numbers or as
a bar graph.

3.3 ON-LINE DEBUGGING AND CONTROL PROGRAM (ODBUG)

ODBUG is similar to the DDT family of debugging packages for
the bigital Equipment Ccrporation PDP-1,4,5,6, and 8 computers,
ODBUG permits the cryptanalyst to examine and set the contents of
variables. It can also execute OCAL statements interpretively, and
thus acts as the OCAS control program by calling the various OCAL
programs the cryptanalyst wants to use,

ODBUG can also be used to set break-points in OCAL programs
ﬂi‘i which, when executed, will return control to ODBUG. If the analyst
is satisfied with the program’s performance, he can resume the
program at the break-point or he can initiate antther procedure.

Since OCAS is adept at handling strings, /nd since an OCAL
progran is basicaiiy an ASCII string until it is compiled, ODBUG can
call procedures to perform simple editing functions on OCAL programs

‘- that are stored as strings. Thus, with ODBUG as a control program,

OCAS will be a complete system for writing, editing, debugging, and

- ‘ ruaning programs written in OCAL. {Complete spuvcifications for
i

ODBUG can be found in Appendix E.)

ottt

£ 13
=

i

Fi SECTION 4

=

i

§ : IMPLEMENTATION

§§A

2

g% R The initial implementation of OCAS will be as an interpreter) N
§§ : for the Digital Equipment Corporatiop (DEC) PDP-6 computer, using

=% the DEC Type 340 display located at Prcject MAC. This computer is

under the

run by the Project MAC Artifical Intelligence Group,
for

direction of Prof. Marvin L. Minsky, and has many advantages

L]
on~lin~ experimentation with systems using computer-generated

displays.
The SNOBOL-type, string pattern-matching

storage-control algorithm, and the elerentary reader functions have
The next step is

After that,

alqgorithm, a simple

already been prograrmed in PDP-6 machine language.
to program the OCAL interpreter in machine language,

input/output procedures will be prograrmeg around th~ -tandard PDP-6
paper tape reader,

R AR R R Tl

ek

inee— |

. input/output package fcxr the on-line teletvpe,
: paper tape punch, and DECtape unit. Finally, the basic OCDIS and
ODBUG routines will be programmed in machine languaqge. It is

SRl

b
e

b 4

.% estimated that this first implementation cf CCAS will take from 500
% to 1900 man-hours to program ané check out.

;§ After experience is gained with OCAS in an interpreted form, an
§. OCAL compiler and loader can be written to increase the efficiency
é of debugged OCAL programs. Specifying, prograrming, and debugging
% this package will take an additional 1000 man-hours.

=

X0,
o

A A T

s é
e
b T
_‘33 d 7 '-,\‘
5 -5
= kK
P <
5 -
&
5
< 3: :
Z s
3 3) s
i |
; 143
3 i3
E i=
. R e e -

T BB e SRR TR R e — S 1t

PR

L o —— L BTV

o —r

15

SECTION 5

EXAMPLES OF OCAL APPLIED TO CRYPTOGRAPRIC PROCESSES

So far, the design of OCAS has been based on the author's
intuition of what he would like to have the computer do as an aid to
soiving cryptograms. This intuition is based both on experience
with inter-active computer systems, and with solving ACA cryptograms
in several cryptographic systems using pencil and paper. Let wus
examine scme of the elementary cryptographic bookkeeping tasks and
see how these would be expressed in OCAL. (An example of a complete
OCAL procedure to £ind the period of a periodic cipher, such as a
Vigenere or Beaufort, can be found in Appendix F.)

5.3 SIMPLE FREQUENCY COUNT

Often a count is made to determine how many times each letter
is contained in a cryptogram. To do this xind of count in OCAL
would require the declarations:

CHARACTER C

READER SCAN

ALPHABET ENG(!ABCDEFGHIJKLMNOPQRSTUVWXYZ'®)

STRING CRYPT

INTEGER FCOUNT

DECLARE FCOUNT (ENG)
{The last declaraticn makes FCOUNT a vector =qual in length to the
alphabet ENG, which contains just the letters A through Z.])

CRYPT = READ.('PTR','.")
[Read an ASCII string from the photoelectric paper tape reader, up
to and including the first period.])

CRYPT = ENG. (CRYPT)
[Convert the string into the alphabet ENG.]

ATTACH, (SCAN,CRYPT)
[Attach the reader SCAN to the string CRYPT.]

C = $C. (SCAN)

ENDSTRING = F!

DO UNTIL ENDSTRING, BEGIN

FCOUNT{C) = PCOUNT(C)+1
{Fnter a DO loop with character variable € set to the first
charactexr of the string CRYPT.]

C = SIC. (SCAN)

END

0

“ 16 SECTION S

The reader function SIC. «dvances the reader one character position
ang reads the nest character into the variable C. When the reader
reaches the end of the striag CRYPT, the frequency count will be
: found in the vector FCOUNT,

R

5.2 LONKCGEST REPEATED SEQ JENCE

The problem here is to finé the longest, non-overlapping,
repeated sequence in the string CRYPT. This example deronstrates the
SNOBOL-type pattern-matching staterment in OCAL:

STEGER N
STRING CRYPT,FILL,RPT,P

=1 :
[Set the length of the first trial repeated string to one.]) ia
SCANFLAG = T

DO WHILL SCANFLAG, BEGIN

CRYPT tR/N* *FILI* R
[Scan the string CRYPT for the fiLrst instance of a string of lergth
N followed by arn arbitrary string, fcllowed by a repeat of the first

v, e aducdeens

string. If a match is found, set the string v~ariables R and FILL to
the substrings of CRYPT that they match.]

g

N = N+l :
RPT = R
END

I
e

When the SNOSOL pattern scan succeeds in finding 2 match, the lenath
of the trial string is incremented by one and the repeated string

founw on this trial is remembered in the string RPT. When the DO

PR C NP,

loop terminates, the first occurrence of the loncest non-overlapping
repeated string will be found in RPT,

5
H
H
H
H
i
F
H

f RO

orsnnean 5
1

S S | g e,)

17

SECTION o

CONCLUSIOKS

This thesis describes an inter-active computer programming
cryptograms .

by

system (OCAS) which is intended to ease the solving of
by giving a cryptanalyst the necessary tools to wasily program a
As may he expected in this type of prcject, the system

computer.
Unfortunately, it was

has grown considerably since its inception.
not possible to completely program ané¢ debug the described system in
the time available :for this thesis,

A computer prodgranmer who 1s working with cryptographic systems
frequently deals with both character strings and algebraic
programming system described has a computer

Trsera e

quantities. The
programming language (OCAL) which is intended to manipulate both of

these kinds of data. Note, however, that OCAL is definitely a

language for computer programmers who are familar with cryptographic
it is not an attempt to produce a “COBOL" for -

kb s

procecures:

S, M

cryptanalysis,

The programming svstem also includes
permit easy specification of CRT displays to accompany OCAL
programs. In addition, the programming system includes an on-line
debugging and control program (OLBUf) to ease debugging of programs

a display generator to

45 o4

written in OCAL.

Even though the system described was
conputer aid for solving cryptograms, certain parts of the system
may be of interest to people designing other inter-active computer
to be emphasized in this respect are:
design philosophy of not 1letting
and second,

intended to provide

M P s s

KT TIEC AT A

.
bt e

software, The concepts
first, the general "fail-soft"
innocent prograrming mistakes "bring the house d&own",
the integrated system of program writing, editing, 4debugging, and

it b W

v
e
[P

running.
The other portion of this thesis which may be of interest ¢to

persons not interested in the field of cryptanalvsis is a discussion

of deficiencies in the SNOBOL string-manipulation language. For
to the SNOBOL scan

R NTEN

R Y 1}

PR ———

example, addition of predicate procedures
algorithr - ~ly enhances the power of the lanquage. This ot _
addis- power may be of use to those interested in ;

¥

natura.-.anguage processing. A

I ¥ P

™ '»‘m < - it e

o
4

rp——
e

-

e = e - — T e R s U

—— e e 1 4 -

S

lbian i o st § ;r,‘m ot
& yt

-

C oyt

19
APPENDIX A

COMMON CIPHER SYSTEMS

e i

Problems enciphered in the following cipher systems appear
regularly in the bi-monthly magazine THE CPYPTOGRAM published by the
Amcrican Cryptogram Association., This list is included to show the
variety of cipher systens that people frequently solve with pencil
and paper. It has beer the goal of this thesis to write a computer
programming language which will permit a cryptanalyst to attack any
one of these systems guickly ané easily.

Amesco

Beaufort
Beaufcrt, Variant
Bifid

Caderius

T R R PR T S G LT O i 1 L R ETIRY S A, P K o VP TRl L él

Fractionated Morse

"
3!

Grandpre

Grille

Gronsfeld

Keyphrase

Myskowsky

Nihilist Substitution
Nihilist Transposition
Phillips

Playfair

Playfair, Seriated
Porta

Portax
Quagmire (Vigenere with mixed tableaus)
Ragbaby
Railfence
Simple Substitution
Slidefair
Transposition, Auto
ransposition, Columnar

R Fi .,‘._Mﬁﬁ};:{ﬂfiﬁ:ﬂﬂ»m&mﬁwﬂ*ﬂEJM:M&M{\Wh'*‘ W ot oan 4 ek SR

Transpositicn, Route
Tri-Digital 534
Trifid =

Tri-Square =24

s

.
PRI

3 Vigenere =¢ -
Vigenere, Auto Key

*

i Vigenere, Running Key

. S s . - -
b " e H A~ e e g —_——
s e s ——— PE

21

o

T
T —— Sy

gy

APPENDIX B

SOLUTION OF THE RAILFENCE CIPHER IN SNOBOL

The Railfence cipher is a simple form of transposition cipher.
The plaintext is written in a zig=-zag route thus:

(]
)
z
o
)

>
=
r't'!
H>
"’m
(g]
t
L]
"
(]
x

The cipher text is then taken off in rows aqiving the following

cryptograms:

B e, L L

SRNHA EAECP EMLIF EIRPL C.

The key consists of how many letters deep the zig-zag is (known as

the rail depth) and whether the zig-zaq staxts off in W form (as the

H example does) or in inverted W form.

The railfence program was‘qritten to test SNOBOL's suitability N

T e s

: as a computer programming language for solving cryptograms. The
method of attack used in the railfence program was to prepare a
string as long as the cryptogram in the form:

' 1234543212345432123... ~

where the highest number in the string indicates the rail depth
) beine tested. The letters of the cryptoaram are taken off one by
one and substituted for the 1's first, then the 2's, etc. The
resulting string is the trial decipherment which is then scored by
using a digraph weight table. This tabie is found in strings CWA
through CWZ in the program. The score is the sum of the weights for
each digraph. 1In making a sequence of trials, the one with the
: highest score is chosen as the best solution for the cryptogram.
; The program in SNOBOL was written to allow the operator to
: direct the search among the various rail depths and forms by asking
for instructions., The instructions consist of simple entries
indicating a particular depth ané form, trials over a series of
depths in both forms, or END which terminates the progran. - -

Writing the program in SNOBOL revealed some serious limitations J

of the overall suitability of SXOBOL for general cryptegraphic work. _'
Among these are: 1) lack of arrays and floating-point numbers, 2;j i
lack of generalized functional arguments for the string o
pattern-matching elements, ané 3) overall system slowness in running
{The total main-frame computer time was .

a T R rR———————

2R

v,

PSS

R a,!xﬂ* G T
7

1

relatively simple examples.

CRTE N e

-— T — - g
L4 - e e ST s - T - of - %
T ame. e S & - Rk p_:“:m T v - gt s T e .
Rt Rl P S i et T . > o — WTW-- p. 3004 S e

A L e e

22 LPPENDIX B

ALL M THRU N

WHERE N AND M ARE POSITIVE INTEGERS INDICATING
THE {NCLUSIVE RAIL DEPTHS TC BE TESTED BCTH IN
STRAIGHT AND INVERTED W STYLE,

END

WHiCH TERMINATES THE RUN,

+N

=N B
FOR A SINGLE TRIAL

WHERE N §S THE NUMBER CF RAIL3 AND
THE SIGN INDICATES STRAIGHT OR
{NVERTED W STYLE RASLS.

often more than 30 seconds sven for simple examples). E

The railfence program example is included here to demonstrate ‘ﬁ

: the kind of problem OCAL was designed to solve. In the exanmple, §§
) bcld capital letters are the computer program tvping and lower-case ?i
. letters are operator responses. Explanatory remarks added for this §§
manuscript are set off by brackets. i%
AN EXAMPLE OF THE RAILFENCE PROGRAM I_‘!

snobol rfence [calling the program in CTSS] %

W 1314,.2 [time of day furnished by CTS5] §

EXECUTION [CTSS indication that the progra. .erating] =

WHICH PROBLEM [railfence program asking for problem ident.) %

(m-a 63) {problem found in the Marcn -~ April 1963 1

issue of The Cryptogram] 3

PROBLEM IS H

SASEP AISNI CRPOB INGAF COEAH OCHAR NSOIS OIIAH RT. (M-A 63) 2

TRY {raiifence pregram asking for directions} 5

heip {operator asking for directions] é

OPTIONS ARE bt

s

i b

£
TRY =
all &4 thru 6 %
RaIL DEPTH SCORE
+5 37 >
-4 29
+5 60
-5 54
+6 33
-6 50
SQLUTION

"8 SCORE ON 5 W STYLE RAILS IS 60

S Y P R R, .5 AL/ A

~‘ SIGNINASANFRANCISCGSHOEREPAIRSHOPBOOTECIAR

‘ TRY

end {operator is satisfied with result and
i terminates the run]
4 R 15.466+5.083 {15 seconds of computer time were spent
running the program and S seconds were spent z

- swapping it in and out of core. Statistics -

~4 are from an actual CTSS run) ’

P

g
-~

o S e T T T o e
e — - T | o e E S e R AR T e R e hisi z

;v_ TN L oY - R o = ~ T et = -

i = = - - e v »

APPENDIX B
: *
i .
5 START
KT
E
3
3}
%
3t
i,
3
i
é
;
3
;:;5
;
i
L 3
) RO
RDA
RDB
3
RDC
) ROD
b RD1
i DN
‘ TRY
3
H
—
) TRY1
DNA

23

RAIL FENCE PROGRAM
CWA = 'B2C2D1F16111J1K1L2MIN3P2R2S2T2V2WIX1YY!

e
CWo
CWE
CWF
CWG
CWH
Cvil
CWd
CWK
CulL
CwM
CWN
cwo
cup
CWQ
CvR
CHsS
CuT
Cwu
cuv
Cuw
CWX
WY
cviz

'A1B1E411L201R1U2Y]!
'A2E2H211K2L102R1TIVL!
'A201E2F1124101R1U1V1Y1!
'A2CID2F1G1LIMIN2P1Q2R2S2VIWIX3!
'AL1EIF1131L102R1TIVY!
'A1E2H211L102R2U1"

YA3E41202T1"
'A1B1C201E1F2G1K2L2MIN302R1IS2T2V2X2!
'AlE102u1

'A1E312N101S1Y3'
'A2D2E312K1L20251T1U1Y3!
'A3B1E312M102P1U1"
'A1C1D2E1G211J1K1IN101S1IT2UIVIXIYT®
'A1B1C101F36111K2LIM2N301P2R2S1T2U3V2W2X1 '
'A2E2H111L202R2TIUY'

tusl‘

'A1D1E2G111K1LIMI01TIVIV]!
'A2E2H212K1LIMINIO2P2Q1S1 T30 2w’
'A2E2HL1303R1S1T2U2W]"
‘A181C1D1EIG1LIMIN2PIR2S2T2}
YA2E41202"

'A2E2H31201"

'A1C1E11101PITY!

'AlE102°

'E302'

MAXRAILS = '9!
WRELX('WHICH PROBLEM')
IDA = RDFLX()
1D = TRIM{IDA)
HOLD = %!
SYSPIT «LINEw
LINE 'END OF PROBLEMS' /F(ROB)
WHELX('PROBLEIt NOT FOUND') /(END)
LINE ID /S{RDC)
LINE
HOLD = HOLD LINE /(RDA)
WRFLX('PROBLEM 1S')
HOLD «{(C)e /F(RDD)
WRFLX{HOLD)
VIRFLX(LENE)
LINE = HULD LINE
LINE '.7? /S(RD1)
HOLD = LINE
SYSPIT «LINEe /(RDD)
LINE «(C)e =
EQUALS(C,'.') /S(DN)
ZQUALS(C,' ') /S(RD1)
CIPHER = CIPHER C /(RD1)
WORK « CIPHER
COUNT = SIZE(VORK)
WRELX('')
WRFLX('TRY')
GUESS = RDFLX(}
GUESS = TRIM(GUESS)
DELTA = "1¢
0s¢ = ‘g
N 3!
GUESS 'ALL® eFle ' * eNle ' ' oF2e¢ ' ' «N2¢ /S(MLPR)
GUESS ‘¢! =
GUESS '€END' /SCEND)
GUESS '-' = /F{DNA)
DELTA = '0' - DELTA
N = GUESS
« NUM{GUESS) /S(DNB)

‘e /5(RD)

3
3

oy
)

i
b

W»w
%
Y

24

5 e R

H

DNB
MLPA

REV
Pi

tOR
MR1

(%]
e
b

FiN

AGH

AGN1

. FINLS

i
1

END

APPENDIX B

WRFLX('OPTIONS ARE')

WRFLX('ALL N THRU M')

WRFLX(*WHERE N AND M ARE POSITIVE INTEGERS INDICATING'?
WRFLX({'THE INCLUSIVE RAIL DEPTHS TO BE TESTED BOTH IN')
WRFLX('STRAIGHT AND INVERTED W STYLE.')

WRFLX('END®)

WRFLX{*WHICH TERMINATES THME RUN, ')

WRFLX("+N')

VAFLX('~N')

WRFLX('FOR A SINGLE TRIAL')

WRFLX('WHERE N IS THE NUMBER OF RAILS AND')

WRFLX('THE SIGN 1HD§CATES STRAIGHT OR')

WRFLX('INVERTEDC W STYLE RAILS.") /(TRY)
RAILS = CUESS /(MLP2)

.GT(N1,'1") /E(TRY1)

LLT(NL, N2) /F(TRY1)

RAILS = N1 =~ "1t

MAXRAILS = N2

WRFLXC'RAIL DEPTH SCORE')

RAILS = RAILS + '1!

.GT(?AILS,MAXRAILS) JS(FINIS)
N="]1"

PATTERN =

D = DELTA

C = COUNT

PATTERN = PATTERN N
N=N+D

c=¢-~*'1

LEQ(C,'0") /SC(P1)
.GE(N,RAILS) /S(REV)
LLE(N,'1%) JF(MLP1)

D =10 -D /(MLPL)
WORK = CI!PHER

N = '1°¢

WORK #CH/'1's =
PATTERN N = CH /S(MOR)
N=N+ "1
+GT(N,RAILS) /F{MR1)
NSC = '0!

WORK = PATTERN

WORK *SC/'1'+ =

FC = SC

WORK #5C/'1'« = [ECFIN)
PNT = 'CU* FC

SPNT SC #i/"1"« /F(5L1)

NSC = NSC + & /(SL1)
«GT(NSC,. C) JF(AGH)
WIN = PATTERM

RLS = RAILS
0SC = NSC
TYPE = !

.GT(DELTA,*0') /S(AGN)
TYPE = ' INVERTED'

- NUM(GUESS) JS{FINIS)
M = DELTA = RAILS

LT, '0Y) /SCAGNT)

M= '

WRELX(! tu ' NSC)

DELTA = '0' - DELTA

.EQ(DELTA,'1%) /S(MLP) o
N = RAILS /(11LP2)

VRFLX(? ")

WRFLX(*SOLUTION')

WRFLX('SCORE ON ' RLS TYPE ' W STYLE RAILS IS ' 0S¢)
WRFLX(¥1H)

/{TRY)

START

1 e ar o

4
@¥

APPENDIX B 25

RAILFENCE PROBLEMS FROM THE CRYPTQOGRAM

TOTIA SHHS1 SESRL REEWE FTEBY QUMNN MOTNT FOAOA AC. (S-0 65)

!TEER DANSO EDXRE TNIRL EFNSE SDOOT BIRTY RRIRK CIEKE HDEAZ OENOH
EHEOG LENE! NTTBU P, (J-A 65)

DESDH DHSAN GEUHA TNNST AETYO OHNTY EIAPE LRIDON TGECM GTEDL OESOO
HET. (M-J 65)

OEOWA RHRKS EPWHM KEST! ASPLD ITEHS LUTMO EERLI STWLA YMGEO E.
(M-A 65)

ENELY MSVRI VAYOB BNYW! EONAH RTAIO WOLRM GHUGO BRSID LYINF DN,
(J-F 65)

SITWS 1iBHO VCUHE OEYVN ETAAA GUDEO IHRWO IGTUS DTLWN AIYMT LOULW ~
IFADB AODFK DARFE S. (N-D 64)

B RIOAN RISEW NGMTS DADAE HFMEH OEHTH KATTS LSTEL TRHTF ERYFH DEOLH
: VAKTS IROS! EIFTC TEFSH WHKTR S, (S-0 64)

VSDIH HLRAN ENITO SOTEL BCACO NESIN ERDLA EEBA} DHPSS HENAN CMBTW
OTAWC Y. (J-A 64)

)
wekd ws 3, Ler e
[

WUAAA 1YRTB YLFBR AESIL FLAEH GATNA ALEOP OCIFE NFSO, (M-J b64)

il 4.0 B

ADHNR EDSAM NLOSt IHEHF SLARA BTEWE MDMFO TATEA UENEH MLHSF NSLTA
SWVRG TDNRO TOIEW AEHOO. (M~A 64&)

e
ity ft

A

o8
3
=
E SASEP AISNI CRPOB INGAF COEAH OCNNR NSO1S OItAH RT. (M-A §3)
= END OF PROBLEMS
;i [The abcve-listed problems where included as an agppendage of
ég the railfence program to facilitate testing. A more realistic
;-2* cryptanalysis program would allow an analyst to ¢type in a -7 =
o, specific problem following the WHICH PROBLEM query of the &
T E
= progranm, rather than call a preloaded problem out of the program.]} M .
53
5 v:%
Py ol
iy b e S UG [N g';}&
T S . *
— B

P T e e .
s N it =T T
% = -

)41_“
)
¥ n

[

S, - c -

Lovks. st

27

APPENDIX C

DETAILED DESCRIPTION OF OCAL SYNTAX

This appendix describes current copecifications of the on-line
cryptanalytic aid lancuage. OCAL 1is intended to be a problem-
oriented computer programming languaqe, designed to make the
solution of cryptograms easier by providina a cryptanalyst with
computer aid. The ideas incorporate¢ in OCAL have been taken from
many languages, such as MAD, PL/I, SMOBOL, LISP, and SLIP. However,
OCAL was not intended to have the full generality of a language such
as PL/I. Instead, OCAL was originally specified for easy implemen-
tation on a computer such as the Digital Equipment Corporation
PDP-6. As the design continued, some compromises were made to
provide more features in the lanquage, so that some of the
apecifications may change when the lanavaae is finally implemented
on a computer.

C.1 SYNTAX NOTATION

In this appendix, meta-variables will be typed in small letters
without intervening blanks, as the following:

identifier
label
boolean-expr

Capital letters indicate words that are part of the 1lanocuage, such
as:

PROCEDURE

Do

STRING

BEGIN

The meta-symbol ... is used to indicate that an arbitrary number of
the rreceding meta-symbol can follow. All other punctuation marks
such as . , : ; must appear as indicated, Optional portions of
definitions will be set off using pairs of slashes {/]. For
e:xample,

LABEL namel/,name2;.../

means that the declaration LABEL is followed by at least one name
and optionally, an arb}trary number of names separated by commas.

P ey

-

-~ LA

L3

X

. - ‘

o - 1 -

¥ [t
5 R
% 3

b

]

53

I—*v.a’..

.

i

28 APPENDIX C

C.2 BASIC PROGRAM ELEMENTS

C.2.1 cCharacter Set
The basic character set for OCAL is the revised ASCII character
set. This character set is used for both language and data.

C.2.2 1ldentifiers
An identifier is a string of 29 or fewer alphanumeric
charactexs; the initial character must be alphabetic. Identifiers

are used for variable names, array names, statement labels,
procedure names, and keywords.

C.2.3 Use of Blanks

Identifiers and constants (except string constants) may not
contain blanks. Identifiers and/or constants may not be irmmediately
adjacent. They must be separated by an operator, cqual sign, paren,
colon, semi~colon, pericd, or blank. All format effecters, such as
horizontal tab, vertical tab, and iine feed are treated as blanks,
and multiple blanks are treated as one blank.

C.2.4 Comments

If the first character at the beginning of a line (i.e., after
a Carriage-Return Line-Fecd [CRLF] combination) is a star [*] then
the entire line up to the next statement terminater (i.e., cemi-
colon or CRLF) is treated as a corment and is ignored in OCAL.

C.2.5 Statements

A statement ix any single statement found in the language and
is terminated by a semi-colon or a CRLF. Sometimes a statement can
contain another statement as a sub-piece. {For examplie, see the IF
statement). If a complete statement does not fit on one line, it
may be continued on the next line by making the first character on
the next line a period {.]. In this case, both the CRLF and the

period are ignored by OCAL. This is true even within string
constants.

C.2.6 Blocks

A block is a group of statements enclosed between the
statements BEGIN and END. B8ERIN and END act as statement paren-
theses and define a block. Bl:cks may be nested tc any depth, A

block may appear anywhere in the lanquage a statement can appear,
except that a hlock cannot appear in place of a declaration or
PROCEDURE statement.

e ——

APPENDIX

on

ok
e

g
s

‘Eg C.2.7 Statement Labels

2 Statements may be labeled to permit reference to them. A
{ § statement label has the form,

% - id:/id:.../ statement

é&&ﬁ@ﬁ#ﬁﬁ%

case, the identifiers are

where "id"s are identifiers. 1In this
tc

called statement labels and may be used interchanaqeablv to refer
Labels before procedures are special cases

the labeled statement.
(see 3Section C.7.1, PROCEDURE

and are called procedure names
Only one label may appear before a PPOCLDURE statement.

declarations in OCAL are

]
i

Statement),
Statement labels appearina before

ignored.,

C.3 BASIC DATA TYPES

C.3.1 Logic

A four-value logic is used in OCAL. The values and their

meanings are:
- true -~
:

e :

B4

= F! - false

t: N! - neutral or neither
U! =~ undefined

iowest,

‘

(7 4

The logic values are ranked from lowest to highest, with N:

3
;g then F!, T!, and U! highest. The resuit of logic constants combined
'g under the operation .A, [AND] produces the lowest of the operands.
%g Similarly, the operator .¥. [inclusive OR] produces the highest of
Z the operands. The operator .N. [NOT] inverts T! with FI, and N!
§§ with ul. The operator .X. [exclusive OR] behaves 1like .V.
é§ ° [inclusive OR] unless both operands are the same, in which case the
‘% : result is the .N. [NOT] of the first operand.
é§ C.3.2 Integer
B An integer is an optionally-signed string of decimal digits, cor

letter

an optionally-signed strin«g of octal digits, followed by the
For an occal integer, the K may be followed bv an octal exponent

3 5
Sk S

?4-

'
ot

H

e | K.
ig given as a one- or two-digit decimal integer. The maximum size of
= an integer depends upon the particular OCAL implementatiorn. On the
n“: - Y
é% PDP-6, up to ten decimal digits or <welve cctal digits are
%’ permitted.) - e
% '3
_x e
T C.3.3 Real B
- = A real number is an optionally-signed string of decimal digits
’ including a cdecimal point {[period]. 1In addition, a real number may R
: have an exronent, indicated by the letter E, followed hy an
optionally signed one- cor two-digit, decimal-integer exponent. The
I
£ H
;)) {

R Rilaqaiyss st

= i S o
- 5%

1

4

e

; - .._‘-'wl

Lo

PR

s — m L A e e —————

30 APPENDIX C

maximum precision of real numbers is dependent on the particular
implementation of OCAL. On the PDP~6, the exponent magnitude must be
less than l0-to-the-38th power and the precision is limited to eight
decimal digits.

C.3.4 <Character
A character is a two- to eight-bit quantity representing an
element of the ASCII character set mapped by an associated alphabet
{(see Section C.3.7). Characters are indicated in the language by a
double quote mark [") followed by one ASCII character or by a number
sign [#]) followed by exactly three octal digits. Characters may be
mapped by alphabets from the ASCII character set to a subset of
ASCII and back again.
For example, the ASCII character A may be represented by either
of the follcowing:
A
$#201

C.3.5 Strine

A string is an arbitrarily long sequence of ASCII characters
delinmited by single quote marks ({']. A string may contain any
combanation cf ASCII characters. The characters singlie quote ['],
double quote {"], and number sign [#] have special meaning when
denoting a string in OCAL. Single quotes delimit the string, which
means that one double quote mark is ignored and the character
immediately following it is inserted in the string, no matter what
that character may be. The double qucte mark is used as a “quote®
character,; so that a single quote may be insertec¢ in the string
using the double quote mark. Since not all eight-bit ASCII
characters can be generated from a normal teletypewriter keyboard, a
special quote character, the number sign (2]}, is used to insert
untypable characters in a string. A number siqn must be followed by
three octal digits, from 000 to 377, inclusive. This octal number
represents the «desirec ASCII character.

Note thau. the carriage return and 1line feed characters may
appear in a string. If a desired string will not fit on one line,
the statement continuation convention may be wused, in which case
neither the CRLF nor the following period will appear in the string.

For example, the following all represent the same ASCII string
in OCAL:

.ARC.
'A.B'C'
‘420184203

PUE— 75 SRR SR —_ % R e T T

U msaras et

L b

1]

o st gl o o MR Y

0 r A

v

o

P T

= s .
e L ety

. 5 S .
g, e
. —————— ©

e o kg iy ety

LN

a

[

*
r
:
:
E
EJ
[od
3
p
¢
%
R
2 N
¥ i
3 :
£ H
3 H
£
i
3
S
- -
4 M
: H
- ¥
i
H
- H
e
g

B A RSy -~ ey
B et e —
e em ¥ il —

APPENDIX C 31

C.3.6 Reader
A reader is a special data type which may be associated with a

Using special reader functions, a reader may be moved
up and down the string, A reader can also read characters from a

string and write characters into a string (see Section C.9, Reader
The reader was introduced into OCAL as a flexible way

given string.

Functions).
of transforming character strings into characters, and vice varsa.

C.3.7 Alphabet
set

An alphabet specifies a mapping from the ASCII character
into ASCI1. The idea was introduced into OCAL to add efficiency
when dealing with characters as subscripts for compound data

Alphabets also allow core storage to be used
In addition,

relatieonships

structures and arrays.
more e€fficiently when
alphabets can be used to exploit certain mathematical
often found between the characters of a particular cryptogram or
cryptographic system. The alphabet declaration has two parts: the
name, and the defining string given in OCAL string notation, In
addition to the characters in the definina string, each alphabet

includes ¢two extra characters in the domain, standing for the 1logic
These are included to give OCAL the ability to

-~

However, the

storing character strinas.

values N! and U!l.

indicate certain logical decisions within a string.
character corresponding to N! and U! are not included in the

cardinality of the alphabet.
The declaration of an alphabet defines two objects within OCAL.

First, a mapping function is called like an OCAL procedure which

converts an ASCII string or character into a string or character in
Under this mapping, any character appearing
into the null

the given alphabet, in
the domain (ASCII), but not in the range, is mapped
Second, the declaration permits the

character (i.e., ignored).
a global integer variable whose

alphabet name to be wused as
magnitude is equal to the cardinality of the the defined alphabet.

An alphabet can also specify the mapping of many characters
This is accomplished by

in

the domain into one character in the range.
observing the following conventions in the defining
characters enclosecd within parentheses in the defining
mapped into the same character as the first character after the obven

If either of the literal characters open parenthesis
range, it must be

string. All
string are

parenthesis.
*(" or close parenthesis “)" is desirec in the

preceded by a double quote mark in the defining string.
a double quote mark is introduced intdo an OCAL string using

{NOTE:

the form “".)
For example, the following will declare a five-letter alphabet
In addition,

called AS, consisting of the characters A B C (and).

i
-

T R s e

Ch

“ . -, »
ey
LIEN- M P

|

—

——

™
A
o —————

-

32 APPENDIX C

the ASCII characters D and E will be mapped into the character C.
ALPHMBET aS('AB{CDF)""("")")

Using the alphabet A5, the ASCIT string °'ABCDEF(AB2Z)' will be mapped

into the string *ABCCC(AB)',

C.3.8 Type Transfer Procedures

The following procedures are available to transform gquantities
from one basic type to another. They are:
CHARACTER. (q)
where "q" is a logic, integer, or real quantity and the result is a
character in the ASCII alphabet;
STRING. (q)
where "q" is a logic, character, integer, or real quantity and the
result is a string in the ASCII aiphabet:
LOGIC. (q)
where "q" is a character, integer or real cuantity;
INTEGER. (q)
where "g" is a logic, character, ASCII string of digits, or real
quantity; and
REAL. (q)
where "q" is a logic, character, ASCII string of digit¢s in REAL
form, or integer quantity.
The procedure
ASCII, (s)
will transfornm the string “s" in any alphabet to an ASCII string.

C.4 BASIC DECLARATIONS

In an OCAL procedure, each variable must be declared before it
is used. The following forms are used to declare variables in an
OCAL procedure:

10GIC id/,id,id.../
INTEGER id/,id,id.../
REAL id/,id,id.../
CHMARACTER ia/,id,id.../
STRING id/,id,id.../
READER id/,id,id.../
ALPAABET id(st)

LABEL id/,id,id.../
EXTERNAL id/.id,id.../
GLOBAL id/,id,id.../

where "id" is an identifier and "st"™ is an OCAL string. The LABEL

declaration means that the variable stands for a statement 1label.

ot b AL ivibriactis B85 an delRK I 8 «\w»m-.»u&..wmﬂm#‘g
X oo e AN

L

oW

RN L T

R s e

M h e m e e e et e — e s P O I i e e o = AR e e —— - T

g e PR 2 e T

WRLER

P

T SR LT T L AR} Tl bibod T

APPENDIX C 33

The GLOBAL declaration means that the variable is to be made
available to all OCAL procedures and 1is always defineéd. The
EXTERNAL declaration means that the variable is a GLOBAL variable
defined by some other OCAL procedure. The variables mentioned ir a
GLOBAL or EXTERNAL declaration must alsc appear within one of the
type declarations. Variables not mentioned in a GLOBAL or EXTERNAL
declaration are definad only within the procedure or block which

contains the declaration.
C.5 COMPOUND DATA STRUCTURES

The zccmpound data structures in OCAL are taken £rom the data
structures found in the programming language FL/I, To avoid
repetition of material, the following secticns in Chapter 2 of the
PL/I manual (IB! Form C28-5571-0) should be implemented in OCAL:

DATA AGGREGATES - pace 43
ARRAYS - paqge 44
STRUCTURES - paae 44
ARRAYS OF STPUCTURES - page 44
NAMING - page 45
SIMPLE NAMES - page 45
SUBSCRIPTED NAMFS -~ page 45
QUALIFIED NAMES - paqge 46
SUBSCRIPTED QUALIFIED NAMES - page 46
The only restriction on the data structures in OCAL is ¢that blanks
are not permitted within qualified names. In implementing these
data structures in OCAL, it shoulé be noteé that each element of a
compound data structure must be previously declared to be one of the
basic data types, or must be a previously declared compound data
structure, The recursive definiticn of a compound data structure is

expressly prohibited in OCAL.
C.6 EXPRESSIONS

C.6.1 Arithmetic Expressions
The following infix operators are available for arithmetic

expressions in OCAL:

i + addition * e
i - subtraction ;
-t * multiplication -

: / division -
Arithmetic is performed on cnaracter, integer, and real cdata: the al
data types being ranked with character lowest, integer next, and
real highest. The operands of any operator are converted to the .*:

.}
B iRt oo g\ o0 oo g e o~ ~ e i T H
=, Lo T T T e - e - = N £

P

»

¥

1,
gl

11
H

L&

R SR

-~

-——

s s eww e e e o e e -

34 APPENDIX C

type of the highest operand, and the result is of that type unless
one of the operands was a character. In that case, the result of
the arithmetic expression is of character type and is taken modulo
the size of the alphabet corresponding to the first character
encountered. 1If this action is not desired, the following "dotted"
operator set may be used:

.+. addition

.-. subtraction

.*. multiplication

./. division

.R, remainder
The "dotted” operators perform cnly the necessary type matching and
indicated arithmetic.

C.6.2 Relational Expressions

Relational expressions return logic values and eare used 1in
making comparisons between various quantities. The relational
operators are:

.G, greater than

.GE. greater than or equal

.L. less than

.LE. less than or equal

.E. equal

.NE. not equal
The operands may be of logic, character, integer, or real type. As
in arithmetic expressions, type conversion takes place between
character, integer, and real data types. However, if one operand is
cf logic type, then they both must be of logic type or the result
will be U! [undefined]. Normally, the result of a relational
expression is T! [true] if the relation holds and F! [false] if it
does not.

C.6.3 Logic Expressions

The logical operators available in OCAL are:

<A. and

.V. inclusive or

.X. exclusive or

.N. not
The operands of & logical operator may be of logic type (ranked
lowest), character, or integer (ranked highest). The result is of
the same type as the highest operand and is the bit-wise combinatior
cof the operands according to the operator, unless both operands are
of iogic type. In this case, the truth tahles jindicated in Section
C.3.1 are used.

[t TR

b o < — Tt mr s — e e s —

iy

e

S

lx‘g‘.

JRERC W % TN

i

PIY FETY TS

AR [T PO N

ol

o

et mo I 7B

P

i

vey

Lol

"
]

+
i)

DAV

t

2ot

b ot

t *«‘m

Ll

WEafiy | 4, it Wiy, o

O b o oo

S

"

ey

” .-

APPENDIX C

C.7 STATEMENTS

C.7.1 PROCEDURE
The PROCEDURL statement marks the beuinninc of an OCAL function

It gives both the procedure name and the list of
OCRL procedures may be
The parameter

or procecdure.
parameters the procedure is to receive.
recursively defined without any special declaration.
list for a procedure may specify either a2 fixed or variable number

of parameters. The form of the PROCFDURE statement for a fixed
nurber cof parameters is
id: PROCEDURE/ {namel,name2,...)/
and the

where "id" is the identifier giving the procedure name
optional parameter list is enclosed in parentheses. Names in the
parameter list give dummy names for arquments used by the procedure.

Cach dummy name nust appear in a type declaration statement in the

procedure,
For a variable number of parameters,

has the form

the PROCEDURE statement

id: PROCEDURE (/f,f,.../(v,v,.c.)/ E,E.../)

where "id" is the procedure name and the ™f"s indicat2 optional

parameters that are always present in the procedure call. The ®"v®r
in parentheses indicate a set of parameters which may be repeated
Again, all the dummy
for tne
integerx

zZerc or more times in any procedure call.
parameter names must appear in type declaration statements

procedure. At each activation of the crocecdure, the global

variable NUMBEROFPSETS wiil contain the nurber of parameter sets
Individual members of a parameter set may ke

in

this procedure call.
referenced by the corvention
parnnj/{subs)/

where "parn” is the dummy name in the procedure parameter iist, ([n]
is an integer or integer wvariable referring to a particular
set, and the optional ({subs) is any subscripting
Note that it does not
integer

parameter
expressicn associated with the parameter,
make sense for the value of n to exceed the value of the

variable NUMBEROFPSETS.

An OCAL procedure is terminated by an FERD statemernt
If control reaches an END statement for a procedure,
statement with no return

(see next
section). it
is equivalent tc executing a RETURN

expression specified.

C.7.2 BEGIN AND END
The BEGIN statement or block marks the beginning of a compound

statement which may appear any place a single statement can appear
In addition, a

{except for a PRGCEDURE statement or declaration).

an

Ao

N

L A Tp—

¥

36 APPENDIX C

compound statement may start with type declaraticn statements,
declaring local variables defined only within thut compound
statement or block. Variables used but not declared within a block
are assumed tc be declared in the procedure or in a block which
encloses this one.
The statement
END /statement-label/
is used to terminate both a block and a procedure. The opticnal
statement label, if present, must match the 1label on the
corresponding BEGIN or PROCEDURE statement.

C.7.3 Assignment

The = sign is used to denote assignment in OCAL. This form
gives
vli/,v2,v3.../ = =1/,e2,e3.../
where the “v"s are either variables which may be subscripted, or
cercain reader functions, and the "e"s are any OCAL expressions. If
more than one variable or expression occurs, the assignments are
made in pairs, el assigned to vl, eZ ascignel to v2, etc. If there
are more expressions tkan variables, the excess expressions are
evaluated but the values are ignored. If *here are more viriables
than expressions, the last expression value is assigned to the
remaining variables.
Automatic type conversion is done within the followisjy grous
of data types:
character~integer-real
logic~-character-integer
Assignments made to a character variable are made as ¢tated, if
the expression is of character type, Otherwise, the expression is
taken modulo the size of the alphabet (if any) associated with the
character.

C.7.4 PROCEDURE calls
Procedures are called with
procedurerame./(pl,p2,...)/
This uses the MAD convention of following the procedure name with a
pericd to differentiate it from a subscripted variable. The “p®s

ar: optional parameters which, if present, are enclosed in
pareathescs. However, a statement may consist of only a procedure
call, in which case any valuez returned oy the procedure is ignored.

C.7.5 Iteration
The iteration statement DO allows a statement or block to be

repeated zero or more times until scme lcgical ccondition is met.

=
e
4
i 4

3
£

N

N b
Ve B bkl 1A

D
st e

-
ik, w6

e,

N
aet

‘
»

Nkt

v

B)

#d ha

T A

b bed nanmreass Slngo o WAV ntir e ARG, o o SRR W) Y

"

b, e

y
b

y
A

-— o st

o

okl r . €, s
S it Pt i n-}’.ac’,ﬂbw..i:‘mh'wisﬁ

S N bt

LR T

Ly
. “')MA v

" tn

fu

¢

T v IRam At T S o1 i, ST) L RPN T

APPEND1X C 37

The DO statement takes the following forms:
DO UNTIL logicexpr, statement
DO WHILE logicexpr, statement
DO NEITHER logicexpr, statement

The UNTIL form repeats the statement until the logieczi expression

logicexpr is not F! [false]. The WHlLE form reneats while logicexpr
is T! [true). The NEITHER form repeats statement while loaicexpr is

! [neither or neutrall.

C.7.6 Conditional
The conditional statement takes the form

IF logicexpr, statement

If the logical expression “logqicexpr" is T! [true], the statement is

executed. Otherwise, the statement is skipped.

C.7.7 GO TO
The GO 70 staterment has the form
GO TO iabel
where label is a statement label or variable of LABEL type.

C.7.8 VALUE
The value returned by on OCAL procedure may be indicated by the

statement
VALUE expr

where expr is any expression.

C.7.9 RETURN
A particular activation of an OCAL procedure, is terminated by

executing the END statement associated with the procedure or by

executing the statement

RETURN /expr/
The value returned by the procedure is the value of the optional
If expr is not present, the value is taken from

expression “expr®”.
If expr is not

the last VALUE statement executed in the procedure.
present and no VALUE statement has been executed, the procedure

returns a null value.

C.7.10 ERROR
A particular OCAL procedure may be terminated by the statement
ERROR /strina/

Executing this statement causes control to return tc the last ON

ERROR statement executed (see ON statement). The value of the

optional string associated witi. the last error statement is found as

the value of the global string variable ERRORSTRING.

ks

SRR e, > 12

s

R e L P T E W e RIS
i ai slaspsab=teShteny s e e RS S

= Rl

ok ol aulitae

e g T — g P

. . T

*

EE T e i T G,

5 .? :"“23 fow e

TA::: %
4

sl o

38

“! APPENDIX C
i C.7.11 oN
% The ON statement (an idea taken from PL/I) allows a programmer
£ : to retain control in spite of certain interrupts which might cause
T : the OCAS job to terminate. The form of the CN statement is

£ ON condition, statement
T) where the “statement® (usually compound)

is executed when the
interrupt corresponding to "conditior® is

found. The interrupt
conditions which the programmer can intercept with the ON statement
are:
ERROR - error return from an OCAL prccedure
CLOCKTICK ~ every time the system clock ticks
PDLOVERFLOW ~ overflow of push-down list
STORAGEFULL -~ no free storage lef:
DISBUFFERFULL -~ overflow of display buffer
DISPLAYSTOP - the display has executed
a stop instruction
STORAGEUSED ~ allotted storage has been used
{(s2e Storage Allocation, Section C,10)
KEYSTROKE ~ one character has entered the
on~line teletype buffer

1f appropriate, the programmer can return control from the interrupt
to the statement OCAL was executing when the
executing the statement

DISMISS
This permits OCAL to resume processing the previous
after some interrupt processing has been done.

interrupt occured by

calculation

The effect of an ON statement may be canceled by 1leaving the
procedure in which the ON was executed, or by the statement
REVERT condition
which causes any interrupts corresponding to condition to be handled
by an ON statement e..ecuted in a higher procedure.

The system may be requested to handle interrupts by ¢the

statemant
*;i SYSTEM condition
1 This instructs the system to do normal processing (if any) of any
‘ interrupt corresponding to this condition., The effect of a SYSTEM
i tatement is canceled by leaving the procedure in which it was
! executed, or by executing a REVERT or ON statement spzcifying the
— same condition.
s 2 An interrupt on a particular condition may be simulated by the
proaram by executing the statement
- Vi INTERRUPT condition
N
A1
%
Y
~& ”43
I —
T et U sl

A
'l

e S ol
ARG s o U ot

',
&

C R, et g ¥)

6

‘[,

F

z
H

b
£

A
*

ko Bl ol

[T—

et

W

P A T

APPENDIX C 39

This has the same effect on OCAL as if the interrupt corresponding

to ccndition had happened when cthe INTZRRUPT statement was executed,
Once an interrupt corresponding to a certain condition hase
inhibited

happened, further interrupts for the same ccndition are
REVERT,

until a DISMISS statement has been executed or until an ON,
or SYSTEM statement specifing the same condition is executed.

C.7.12 SKOBOL Pattern Maiching
The pattern-matching statement in OCAL is taken directly from
The basic forms of the

the SNOROL string-processing language.

SNOBOL statement are:

input /pe pe .../

input = st st /st .../

input pe pe ... = /st st .../
where "input® is a string or string variable, “pe"s are pattern
elements (defined later), and "st"s are strings or string variables.

The SNOBOL statement works in this manner: the input string is

scanned frcm left to right for a match against the mattern elements
If a match is found and the = sign is present,

in the given order.
are replaced by the concatenation of

matched pattern elements
strings “st®* (if any).
Pattern elements may be string constants, string wvariables or

arbitrary strings found in the input string itself. Arbitrary

3trings are denoted by string variables bracketed by stars.

For example: *Ale
HOLD
Arbitrary strings match any substring in the string input, including

the null string. Arbitrary strings may be subject to a number of

conditions. An arbitrary string designated
AM/3
will match a substring exactly three characters long.
form of a fixed-length arbitrary string is
name/n
where "name" is a string variable and "n® is an integer or integer

An arbitrary string may be subject to the condition of
This

The general

variable.
containing a matching number of left and right parentheses.

condition is designated by
{name)
where "name™ is a string variable,
An arbitrary string may be subject to a condition specified by

a general logiczl procedure by using the form
name/proc. (argl,arqg2,...}
a string variable, "proc® is a logical

where "name® again is
The “args”

procedure, and the "args" are any procedure arguments.

¥

-
iy

]

i

X

i

=

x

I

‘é

i
_—

"
¥
[

o

|
kN

{

Wﬂﬂﬁ\

g

1PN
(4]

.oty -

", :
SR et b et 1

ff

LN/

1

aar ~ T Lo

JR——

LRI P

f

40 APPENDIX C

may specificaliy contain string variables which are substrings
matched earlier in the SNOBOL pattern-matching statement. The logic
procedure should return the value T! (true] if the proposed contents
of name are satisfactory, N! {neither] if the proposed contents of
name are not satisfactory because the string is too short, and the
value F! ([false] if the proposed contents of name are unsatisfactory
for any other reason. If the logic procedure returns the value U!
[undefined]}, the SNOBOL pattern scanner will take an ERROR return
with the input string as the ERROR string.

Aftex the pattern match is ccmplete, the arbitrary
string=-variable nuames contain copies of the strings they matched in
the input. These names may be mentioned in the concatenation
section of the SNOBOL statement or in any other statement following

thr pattern-matching statement. Note also that string-variable
pattern elements may have the same name as arbitrary pattern
elerents matched earlier in the pattern-matching statement. This

makes it possible to search the input string for non-overlapping
repeats of an arbitrary pattern element.

If the SNOBOL pattern match succeeds, the global logic variable
SCANFLAG is set to T! [true]. Failure to find a match causes
SCANFLAG to be set F! [false]. This condition can be tested by the
IF or DO statements.

C.8 INPUT/OUTPUT PROCEDURES

Input/output procedures in OCAL will irnitially be limited to
bandling strings. Since the OCAL character set (ASCII) is quit=
general, strings can be converted to any other data type in OCAL.
Conversely, output material can be converted to ASCII strings in
OCAL. Two basic procedures are furnished with OCAL. They are:

READ. (file/,termin/)

WRITE. (file,string)
The argurment file is either 'PTR', 'PNCH', 'TTY' or ‘namel name2®
specifing photoelectric tape reader, paper tape punch, on-line
teletype, or file names on backup storage (DECtape on the PDP-$§).
Only one file from backup storage may be open for reading and one
file ovhn for writing at a time. If the optional second argument
"termin®" is present in the RFAD call, the READ procedure returns as
value the ASCII string of all characters up to and including the
first match of the string termin. If termin is not present, the
value of the READ procedure is all characters then ir the input
buffer. An end-of-file on backup storage is signaled by having the
last character be ASCII character EOT.

APPLENRDIX C 41

?% The second argument of the WRITE procedure is the output
%é string,

%E A file on backup storage may be closed by using the call

3 CLOSE. (file)

%g where "file" is a string 'namel name2' as cescribed above,

g : Exanples:s }
% INP = READ. (*TTY','#215§212')

i . will read one line from the on-line telatype, up to and including
B the Carriage-Return (215) Line-Feed (#212). The resulting string
. will be placed in the string variable INP;

3 WRITE. ('PNCH' ,0UT)

g will punch the contents of the string OUT on the paper tape punch:

E IN = READ. ('ALPHA DICT',' ')

; will read from backup storage file ALPHA DICT the first string up to
s and including a space,

it

C.9 READER FUNCTIONS

.
[N W]

Special functions for using the READLR data tvpe are available
in OCAL. The general form of these functions is
$tn/fnfn.../. (readv)

where the "“fn"s are elementary reader functions
The elementary reader functions are:

e

and "readv" is a2

variable cf reader type.

- aa

C - Write one Character into a string if this appears on the

otherwise read ormne

s

left side of an assignment staterent,

e

character out of a string.

tc the integer Value if this

V - Set the reader position
Ctherwise

appears on the left side of an assignment statement.

return the integer value of the current reader pcsition in

characters from the head of the string.

I - Increment the reader position which moves the reader one
character position forward on the string. If an attempt is

made to pass the end of the string, the global logic variable
Otherwise, the ENDSTRING is set to

S D, G R o AW b O ¢ g

¥ e

§ ENDSTRING Is to T! ([truel.
§ i F! [false]. If the "I" is on the left side of an assiqnment - —
i ; statement and an attempt is made to pass the end of the string, ;
i the string is extended one character position and the global
s logic variable EXTENDSTRING is set to T! [true}l. In any other -
case EXTENDSTRING is set to *i [false], and attempts to pass =Y
. the end of the string leave tiie reader position unchanged and
set the ENDSTRING variable. - -
i -
,- i}
St g, SRR o et TE L ek
= R el e - B)
- EY .
&

st

—— e e e e e e —— - v

. ...M;u‘jy*
'
|
|
?
f

‘
i
§

'imﬂmmms&;} +_ ‘

42 APPENDIX C

D - Decrement the reader position which moves the reader one
character position towards the beginning of the string. Any
attempt to pass the beginning cf the string will 1leave the
rezder position unchanged and the global 1logic variable
BEGINSTRING set to T! [truel. If no attempt is made to pass
the beginning of the string, BEGINSTRING is set tc F! [false],

RI - Rotary Increment. This behaves like I [increment}], except

that passing the end of a string will position the reader at
the beginning of the string.

RD - Rotary Decrement. This bshaves like D {decrement], except
that attempts to pass the beginning of a string will position

the reader at the end of the string. No global <variables are
altered by RI and RD.

-

M - Mark. This notes the rurrent position of the reader on the
string for future reference.

P -~ Position. Return the reader to the position set Ly the
last M [mark].

N - Initialize. Return the reader to the beginning of the
string.

A reader may be attached to a given string by calling the
ATTACH procedure with

. ATTACH, (xdr,st)

where ”rdr® is a variable of the READER type and "st® is any -
non-null string. :

Example: {The following declarations hold throughout this
example: R is a READER variable, s is a STRING varjable, C and D

are CHARACTER variables, and I is an INTEGER variable. The initial P

‘k\ contents of S are 'LMNOPQ’.) 5%
! ATTACH. {R,S)

‘ {attach reader R to string S!? PR

3 C = SC.(R) i

) [set C equal to the character L) ::

- D = $IC. (R) -

it {set D equal to the character M] =

I = VM. (R)

{set I egqual to 2 and remember tlic value as a mark]}

o marerenih

-iia,,;;.._. R 2z e

Cuet

IERIES L N

Ak,
.y

s

i
{

———— ——— - R

APPENDIX C 43
SV.(R) = 4

[position the reader over the character 0]
SIC.(R) = D

[replace the character P with the character M)
$11. (R}

{this will produce no value but will set the global 1logic variable
ENDSTRING to T!{truel. The reader will be left positioned over the
character R}

SIC.(R} = C °
{set the global variable EXTENDSTRING to T! {true] and will append
the character L to the end of the string]

$P.(R)
[return the reader to the mark. The reader will be positiocneé over
the first ! on the string]

$N. (R)
{return the readex to the head of the string]

As a result of previous reader functions, the string S will now

contain ‘'LMNOMQL'.
C.10 RESOURCE ALLOCATION

Two resouxce allocation statements are available in OCAL. The
statement
ALLOT PUSHDOWNLIST n
will allot "n® registers to the system push-~down list where n is an
integer or integer variable. The push-down list space allotment may
be changed at any time, but an insufficient push~down 1list will
cause a system interrupt.
The statement
LIMIT STORAGE n
will cause a system interrupt after n words have been used from free
storage, The number of words of storage used since the teginning of
the current OCAS job is found in the global integer variable
STORAGEUSED.
Push~down overflow or storage-limit interrupt may be handled in
OCAL by using the ON statement. These features allow the OCAL
program to limit larg2 searchas or catch certain procedures that are

in an infinite loop.

[.
[P ¥ S - - = — J— L —

e

45

APPENDIX D

ON-LINE CRYPTANALYTIC DISPLAY GENERATOR (OCDIS)

The following procedures wiil be available to generate ~RT
displays in OCAS. The inital implementation of «CDIS will be for
the DEC Type 340 displey attached to the Project MAC PDP-6.

D.l PROCEDURES

The display is organized about a @isplay format which is the
argument to several display procedures. Only one format may be on
the CRT at one time. Diftzrent formats may be thought of as
different pages which may be displaved in any order under the
control of an OCAL program. The basic display procedure is

COMPILEDIS. (frm/,9,9,94v../) ~

where "frm" is a string or string variable giving the display format
and the optional "g"s are the variables or constants which are to be
displaved in the given format.

individual items within an alveady~compiled format may be n. ned
and namel items may be changed using the procedure

CHANGEDIS. {frm,name,item)

where "frm" is the format, "name® is a string or string variable
giving the name of the item in the format, and "item" is the new
value of the gquantity to be displaved. The advantage of this
procedure is that individual display items in a large format may be
changed without recompiling the entire display.

The display is started by the procedure

STARTDIS. (frn)

where "frm" is the format., 1In addition to the requested format,

each STARTDIS will cause a log display to appear in the upper left - -
hand cormer of the screen. The log gives the current date. time, é
frame number, and a short title for the display. The log B

information iz useful in identifying still photographs taken of the - -
display and is maintained by the system without being a burden to at
the programmer. The log information for a particular console session

may be initialized using the procedure call

iy - o - - B o
e i N I e e - T E e

% DS, B T T) o W Ot o Bt ET e mm STKAS o ——y
-

46 APPENDIX D

5 bt 1N

LOG. {date,time, frame,title}

R

(s

where "date” is an integer giving the current Julian day, "time” is
an integer giving the current time in 60ths of seconds after
, midnight, "frame™ is the inital frame number, and "title" 1is a
’ short string used to title the display. A negative number in the
date, time, or frame positions will leave those constants uncharnged.
The frame number is incremented by one every time a new format is
displayed. The system will automatically update the date, time, and
frame number once they are initialized.

The display may be turned off usinc the procedure call
STOPDIS.

Room for the display buffer may be dynamically allocated by :
calling the procedure

BUFFERDIS. (n)

where "n" is an integer variable or constant giving the size of the
display buffer in words of core storage. If the display buffer is
too small for a particular display, che buffer will overflow. This
condition may be detected in an OCAL program with the ON statement
using the DISBUFFLRFULL condition.

Ly

v

All displays are maintained in program interrupt mode, sco that
calculations may continue even when a displiay is visible.

D.2 FORMATS
A format is an ASCII string in the forn

X y item item ...

[

where x and y are octal integers aiving the absclute reference point
TR in screen co-ordinates for the rest of the format. Each item is a

it i R e ik b s KR B

list of display descriptors; the entire list for any one item beina
enclosed in parentheses. The display descriptors for a particular
item may be in any order and only those descriptors relevant to the
itemn being displayed need be included in the list. Certain display
descriptors, such as SIZE, INTENSITY, and RELOC effect each item in

| K

jw oA |
»

\.
s

;s the display. If they are not specified for a particular display
) item, the previous item's value is used for SIZF and INTFNSITY, and

the RELOC is taken from wherever the last itemt finished.

. L2
——g . o AT - —_——— -
- - - = ——— -——

APFENDIX D 47
B.3 DISPLAY DESCRIPTORS
Each display descriptor 1is enclosed 1in parentheses. It

consists of 2 descriptor tyne fellowed by modifiers or values

separated by spaces. The display descriptors are:

(TYPE t) - gives the basic type of data auantity to be displayed as
this iten. Pernitted types are STRING, CHARACTER, INTEGER, REAL,

and LOGIC.

(RELOC x y) - the octal integers x and vy give the starting 1location

of the display item in screen co~-ordinates relative to the format

reference location. If RELCC is not specified, the item will be
displayed starting wherever the last item stopped.
{NAME nm) -~ gives the external name of this display item, Named

items may be changed without recompiling the entire display format
by using the CHANGEDIS procedure.

{SI2L n) - where n is a decimal integer from 1 to 4 giving the

. character size or dot separation to be used, (See the Type 340
'? section of the PDP=-6 manual.,)

the

(INTENSITY n) - where n is a decimal integer from 1 to B8 giving

§ relative intensity of the displayed item. -

N (CASE ¢) - where ¢ is UPPER or LOWER. This is used to determine the

Ei case of an alphabetic character or string display

E . (SPACE n} - where n is NO or a decimal inteqer. This descriptor is

éi for string displays. bl causes spaces in the string to be

E; suppressed. An intecer will cause a spacc to be inserted after

%i every nth letter (5 is a typical value).

F!

5 ; (WILTH n) = where n is a decimal integer. This descriptor sets the

? ; width in characters for a string displav. If the string to be

3 % dispiayed is longer than n characters, the string is hroken into

g'% lines of length n. The space between successive lines is normally) :' ~
: . one vertical character space, but this may be increased to n 5 ’
f?”% character sraces using the VSPACE descriptor. o

el

(DEPRESS n) - where n is a decimal inteqer. This descriptor, used
T in string displays, declares that the string should begin n vertical

character spaces below the position specifiad by RELOC.

o

oy

)
B
s ol 50 A e

W
Ik}

'
L

H

b

W,

|
1
i
3

7

¥
i
ik

48 APPFNDIY D

(VSPACE n) - where n is a decimal integyer aiving the number of

vertical character spaces between successive lines of a
display,

string

(BASE) -~ ceclares this item to be a control string which 1is not
displavec. The control string is used as a reference for the
variable spacing descriptor BELL.

(BELL n} - where n is a decimal integer number of characters. Iv is
used to prevent words in a string from being broken between succes-
sive 1°-es in the display. BELL causes the display line to end at
the first space after n characters relative to the BAMSE reference
string. If no BASE string is specified, the string being displaved
will be usecd as the reference string.

(OFFSET) -~ declares that the next parameter in the araqument list is
an integer offset %to he applied to the current string. This
descrintor is uscful when displaying cryptoaraphic slides.

(CONSTANT ...5000) - every character after the space followina
CONSTANT up to the special terminating character #000 is taken as a
constant string to be displayed. CONSTANT's need no argament in the
corresponding position in the COMPILEDIS call.

(ARRAY nl:ml /n2:m2/) - where the arquments are array subscript
ranges in the OCAL format. This desc.iptor is vsed to declare that
the display argument is a one- or two-~dimensional ARRAY. Only
arr s of type CHARACZTER, INTEGER, or REAL m~v b displayed.
{BARGPAPH n:m) - where n and m are integers. This descriptor
indicates that the display is a onre-dirmensional array that is to be
displayed as a bar graph. Only INTEGER or REAL arrays may be
displayed as a bar gragh.

(SCALEFACTOR) - is used with the BARGRAPH descriptor. It indicates
that the next item in the czll is a real nunber whiclt is to multiply
each itenm in the bar graph display.

(LINE x y) - whkere x and y are octal integers. This causes a line
to be drawn fron the current relative location to the point x,y

relative to the format reference point. The line may be solid or
dotted, depending on the SIZ2E descriptor.

Coai duds v

[e -
My [
D T e e e —

49
APPLNDIX E
ON~LINE DEBUGGING AND CONTROL PROGRA! (ODBUG)
This appendix describes the features of the on-line debuaaing
and control program for OCAS., The program makes use of an OCAL
it

interpreter so that an OCAL statement may be executed by typing
cn the console. Ir addition, the followina features are included:

.var -~ causes the contents of tae <variable "var®™ to be printeé out
cn the on-line conscle. After the printout the varible is “open",

which means new contents may de inserted by typing them wusing OCAL
the variakle, 1f

o liver e vn s

A statement terminater “closes”

VA fa

conventions.
E nothing s typed before the statement terminater, the contents of
- the variable remain unchanged.
L5
. /S - causes the current. OCAL table of active symbols to be typeé out
_% giving both the symbol names ané their types.
f /D name -~ causes the entire current state of OCAS to be dJumpedé on
5 backup storage in a file called NAME SAVED.
N /R name ~ restores the state of OCAS from the NAME SAVED file on
i backup storage.
% /P pro - where pro is the name of an interpreted OCAL procedure.
. This permits ODBUG to insert a breakpoint in this procedure (see
i /).
3
1
] /B id -~ places a breakpoint at the statement label “id®™ in the
§ currently-addressed OCAL procedure. Ixecuting a breakpoint returns
§ control to ODLBUG. If "id" 1is not specified, any outstanling
i breakpoint is removed.
k3
) /C - allcows OCAS to continue executing statements after the last
3 breakpoint was executed.
§ .
§ . ~——
’ \ /G id - starts the OCAL interpreter at the statement label "id” in -
‘*“é the currently-addressed procecdure (see /P). vc
BRCAK - a single depression of the BREAK button will return control a
[
to GDBUG as if a ! reakpoint had been executed. The program may be
restarted using the /C comrand. N
~i
¢) é
= - BT i:g“‘

'
e
]

{

|

[PP

T e R, -~ =

51

APPENDIX F

AN EXAMPLE IN OCAL -~ FINDING THE PERIOD OF A PERIODIC CIPHER

The following example is based on a method suggested by William
G. Bryan in Cryptographic ABC's for finding the period of a
cryptogram enciphered with a periodic cipher (e.qg., Vigenere or
Beaufort). The method consists of finding the distance in
characters between each and every A in the cryptogram, The
distances are then factored and tallies are macde for each factor

corresponding to a suspected period of the cryptogram. Usually a
range of periods from 3 to 12 is tested. This procedure is repeated
for each B, each C, etc., down to each 2. Next, the tallies
corresponding to each period are summed and weighted by the period.
The highest weight usually indicates the period of the cryptogram,

This method of finding the period is known as the “Kasiski®
method after Major F. W. Kasiski, a German cryptanalyst, who
pubiished a paper on it in 1863 (see page 127 ia GAINES). This
method works because in a periodic cipher, the key must be repeated
a number of times to produce a cryptogram and, as a result, many
times the distance between two occurences of the same cipher text
letter is a multiple of the key length .nich is the period.

EXAMPLE

KASISK] METHOD IN OCAL
ER10D: PROCEODURE (CRYPT,PER,N,M}

PARAMETERS ARE:
CRYPT - A STRING GIVING THE CRYPTOGRAM
PER - AN INTEGER VECTOR WITK SUBSCRIPT RANGE N TO M
THE WEIGHTED TALLIES ARE RETURNED N THIS VEITOR
N - AN INTEGER GIVING THE LOUEST PERIOD TO 8E TESTVED

M - INTEGZR GiIVING HIGHIST PORICD TQ BE TESTED

DELLARATIONS NEXT

*» % % % % % % % B U P

STRING CRYPT

CHARACTER C

INTEGER PER,N,M

INTECER DIST, INDEX,ALPS,K,L1,1L2

INTEGER SEP,TR - ~
READER R it
DECLARE PER(«x) *
-
« THE VECTOR PER !S DIMENSIONED IN THE CALLING PROCEDURE
. -
DECLLRE NIST{LENMGTH, (CRYPT)/S) -}
DECLARING YHE ULGCAL VECTOR DIST
St & e = TR - o s T eme-d ¥ »?‘
e S T T e — T e e — e e L
= - = S > T T T e e i o ;*E*;
- e A

=T TRV 4
I
'ugyni-unT

W
H

— i
H

- = i"“

K}

f

S . Ry ~

52 APPENDIX

REACER R

L 4

* THE ACTUAL PROCEDURE BEGINS HERE
-
ATTACH. (R, CRYPT)
ALPS = SIZE.(ALPHABET.(CRYPT))
INDEX = 1
DO WHILE INDEX .LE. ALPS, LOOP1: BEGIN

-

* [TERATE OVER THE SIZE OF THE ALPHABET

*

C =3$NC.(R)

*

* RETURN READER 7O HEAD OF STRING AND READ FIRST CHARACTER
*

K =1

DO UNTIL ENDSTRING, LOGP2: BEGIN

*

* READ THE STRING CRYPT CHARACTER BY CHARACTER
-
IF C .E. INDEX, CONDl: BEGIN
DIST(K) = $V.(R)

« RECORD DISTANCE FROM HEAD OF STRING
L
K=K+l
END COND1
C = $IC.(R)

*

» [NCREMENT THE READER AND READ NEXT CHARACTER
t
END LOOP2
1 =1
DO UNTIL L1 .E. K, LOOP3: BEGIN

*

» COMPUTE THE CHARACTER DISTANCE BETWEEN EACH OCCURENCE
*
L2 =11+1
00 UNTIL L2 .G. K, LOOPL: BEGIN
SEP = DIST(L2) - DIST(LL)
TR = N
DO UNTIL TR .G. M, LOOPS: BEGIN

+ TEST EACH PERIOD FROM R 70 M FOR REMAINDER 0
*
IF (SEP .R., TR) .E. 0,
. PER(TR) = PER(TR) + 1
TR = TR + 1
END LOOPS
L2 = L2 + 1
END LOOPY
L1 = L1 + 1
END L00P3
INDEX = INDEX + 1
END LOOP1

NOW WEIGHT EACH ITEM !N PER BY THE RESPECTIVE PERIOD

K-=1

DO UNTIL K .G. M, LOOP6: BEGIN
PER(K) = PER(K) + 1}
K=K=+1
END LOOPS

ALL DONE

ENG PERIGD

O] PLISOEE e

£

L URSR S R S
> T TR e - eeteecees— - —

AT R Ay trrk Lo 5 g e
ﬁh%ﬁﬂ&w&uﬁ&%ﬁﬁﬂmﬂﬁwﬁwmmQm%bﬂﬁ%mﬁyﬁnmx.p“n«‘

SR

w3
I
g
e
=y
5 i
- 2
o
5 .
- £
= :
2
El .
2 :
; ¢
[
L
= H
- i
_
¥
3
3
i i
- 3
i
- £
3
.
< H
..... 4
= i
L]
e -
A Pt st g

53

BIBLIOGRAPHY

ARDEN, Bruce et al, The Michigan Algorithm Decoder (MAD), University

of Michigan, November, 1963

Les Chiffres Secrets Devoiles, Paris, 1901

BAZERILS, Commandant E.,

“METEOR: a LISP Interpreter for String

The Programming l.anguaqge LISP: 1Its Oneration and
Cambridge, Massachu-

BOBROW, Daniel G.,
Transformations™,
Applications, Information International Inc.,
setts, 1964

BRYAN, William G., Cryptographic ABC's, American Cryptogram Associ-

ation, 1960

DEC, DDT-6 Reference Manual, Digital Equipment Corporation, Maynard,

Massachusetts, 196%

DEC, Programmed Data Processor~6 Handbook, Form F-65, Digital Equip-

ment Corporation, Maynard, Massachusetts, 1965

Precis de Cryptographie Moderne, 2nd edition, 1959

EYRAUD, Charles,

A String Manipulation Language®,

FARBER, David, et al, "SNOBOL,
11, No. 2

Journal of the Association of Computing Machinery, Vol.
(January 1964), pp. 21-30

FRIEDMAN, Wiliiam F., An Introduction to Methods for the Solution of
Ciphers, Riverbank Laboratories Publication Mo 17, Geneva, Illinois,

1918

GAINES, Helen F., Cryptanalysis, Dover Publications, New York, 1956

String Pattern-Matching in

GRISWOLD, Robert E. and POLANSKY, I. P.,
the Programming Lanqguage SNOBOL, Memorandum MM-63-3344-3, 3ell Tele-

July, 1963

phone Laboratories Inc.,

IBM Operating System/360 - PL/I: Language Specifications, Form C28-

6571-0, 1965

MIT Press,

LISP 1.5 Programmer's Manual,

McCARTHY, John, et al,
Cambridge, Massachusetts, 1963

e 3
Bt s T : — e

.

)

e A i st o e e R

A Mo e = T B s o ——a t—

i U

de o= -

54

} NAUR, Peter, et al, "Revised Report on the Algorithmic Language
1 ALGOL 60", Communications of the Association for Computing Machinery
f Vvel. 6, No. 1, (January 1963}, pp 1-17

: PRATT, Fletcher, Secret and Urgent, Blue Ribbon Books, New York,
4 - 1939
ﬁé SACCO, General L., Manuale di Crittografia, 2nd edition, Rome, 1936
:’ WEIZENBAUM, Joseph, “Symmetric List Processor (SLIP)", Communica-
.é tions of the Association of Computing Machinery, Vol. 6, No. 9
3 (September 1%63), pp. 524-536

YARDLEY, Herbert O., The American Black Chamber, Blue Ribbon Books,
‘E New York, 1939

g YNGVE, Victor H., et al, COMIT Programmers Reference !Manual, MIT
- Press, Cambridge, Massachusetts, 1961

3

- ZANOTTI, Mario, Crittographia: Le Scritture Segrete, Milan, 1928
3 =

3 K
.. §

: i

. %

<

UNCLASSIFIED

Security Classificatioa

DOCUMENT CONTROL DATA - R&D

(Securily cizreification of *itle bedy ot abeirect sand indeing annstit'on muel be entered vhox the overall report is classitied)

1, DRISINATING 2CTIVITY (Corporas suthor) i:‘ RIPORT SECURITY CLASSIPICAYION

Massachugetts Institute of Techrology URCLASSIFIED

Project MAC w cadur

3. RELPORY VITLE

OCAS - On-line Iryptanalytic Aid 3ystem

4. DESCRIPTIVE NOTES (Type of report and trclusive dates)

Master's Thesis, Electrical Engireering

3. AUTHOR(S) (Lost norwe, liret name, Initial)

Edwards , Daniel J.

6. MEPORY DATE

May 1906

Ta TOTAL NQ. OF PAGES 7% NO OF REFS

54 20

88 CONTRAC. OR GRANT MO,
Office of Naval Research, MNora4102(91) .
b BROJLLT MO. g HAC-TR~27
Nr~048-189
[

$a ORICIHATOR'S REFOTT NUMBERIS)

3. OTHER REPORT NOIS (Aay other maeders that may be
aseigned ihis semcrt)
-«

10 AVAILASILITY/LIITATION NOTICES
Center, Document Service Cexter, Camerda Station, Alexandria, Virginia 22314:
Others furom:

Silis Building, 5285 Port Royal Road, Springfield, Virgzinis 22151

Defense contractors may obtain from: Deferse ocumertation

Clearinghouse for FPederal 3cientific and Technical Iaformation {CPITI)

1. SUPPLERENTA®Y NOTES 12. SPONSORING MILITARY ACTIVIYY

Advanced Research Projects Agency
Kone 3D-206 Pentzgon
Washington, D. C. 20301

3. ABSTRACY

Deficiencies of various programming languages for dealiag with quantities
frequently encommtered in cryptanalysis of simple cipher systems are discussed,
A prograeming system is proposed which will permi: a cryptanalyst to write and
debug prograzs to aid in the solution of cryptograms or cryptographic systexms.
The basic elezents of the proposed progracming sysiem are discusged in detail.
Tney include: 1) a progrexing language to handle both algebraic quantities
an¢ character strings, 2) a displsy generator to pemmit quick specification cof
a display freme containing both alphanumeric strings and numerical data for an
co-line CRT display device, and 3) an on-line program to control operation of
the system snd aid 1o debugging programs writtea in the proposed language.

14. XTY wORDS

Couputer Hultiple-access computere EKesi-time comouter systems
Cryptanalysis On-line cocputer systems Time-sharing
Machine-aided cognition Programming Languages Tima-shared cooputer systems

DD 595 1473 (M.LY.) UNCLASSIFIZD

Secmity Classification

